JUNE 22, 2023

UPDATE ON ELECTRON BEAM MANIPULATION AT THE ARGONNE WAKEFIELD ACCELERATOR FACILITY

Physics and Applications of High Brightness Beams San Sebastian, Spain - June 19-23, 2023

Contents

Introduction to AWA facility

Research activities on the beam manipulations

- Longitudinal bunch shaping
- Transverse emittance control and partitioning
- > AI/ML-based phase space reconstruction
- Future plans and summary

Introduction to AWA facility in Argonne National Lab

Website: https://www.anl.gov/awa

Beam test facility

• 100 MeV energy particle beams

Beam test facilities mission

- Providing experimental test beds for the <u>experimental validation</u> emerging accelerator science
- Developing the S&T needed to enable the <u>next</u> <u>generation</u> of science facilities and accelerator applications.
- <u>Educating and training</u> future scientists and engineers.

https://www.flickr.com/photos/argonne/46276624524

For more details:

J. Power, The Argonne Wakefield Accelerator Beam Test Facility for Novel Accelerator Research, AAC 2022 workshop

AWA Science: Research Theme

> For more details: John power, invited talk at 09:30 (Tue) @ PAHBB

Simplified schematic view of AWA (Not to scale)

Novel R&D facility for high-brightness beam and AAC

Research programs for beam manipulation > Longitudinal bunch shaping

Motivation of longitudinal bunch shaping

Motivation of longitudinal bunch shaping

High-gradient, high-transformer ratio wakefield generation: <u>High-charge bunch shaping (e.g., triangular longitudinal distribution)</u>

UCLA collaboration: Multi-leaf collimator

UCLA collaboration: Multi-leaf collimator

UCLA collaboration: Multi-leaf collimator

Argonne 🕰

> References: G. Ha et al., PRAB 23, 072803, 2020. S. Kim et al., In Proc. IPAC'22 and AAC 2022

* Discussion with the numerical simulations

** TDC: Transverse deflecting cavity

> References: G. Ha et al., PRAB 23, 072803, 2020. S. Kim et al., In Proc. IPAC'22 and AAC 2022

* Discussion with the numerical simulations ** TDC: Transverse deflecting cavity

> References: G. Ha et al., PRAB 23, 072803, 2020. S. Kim et al., In Proc. IPAC'22 and AAC 2022

* Discussion with the numerical simulations

** TDC: Transverse deflecting cavity

References: G. Ha et al., PRAB 23, 072803, 2020. S. Kim et al., In Proc. IPAC'22 and AAC 2022

ENERGY U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

Start-to-end OPAL simulation **TDC #2 TDC #1** Transverse Quad 15 1.0 Relativistic Horizontal kick Horizontal kick (hor. focusing) mask Charge after system: Beam 11.0 nC (Initial: 40 nC) 10-0.8 Normalized density 5-X Head Tail x (mm) 0--5 Charge distribution: 0.2 Х -10-Triangle **Before mask** After mask 0.0 -15-2 2 -4 Ó Δ 1.0 z (mm) (z-x) (z-x) 0.8 0.6 b 0.4 alized 0.2 0 0.0 Ò -4 -2 Ò z (mm) z (mm) 1.0 (x-y) (x-y) 0.8 0.6 alized de 0.2 N 0.0 -4 0 -4 -7 x (mm) x (mm)

Argonne 📢

* Discussion with the numerical simulations

** TDC: Transverse deflecting cavity

> References: G. Ha et al., PRAB 23, 072803, 2020. S. Kim et al., In Proc. IPAC'22 and AAC 2022

U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

ENERGY

Start-to-end OPAL simulation **TDC #2 TDC #1** Transverse Quad 15 1.0 Relativistic Horizontal kick Horizontal kick (hor. focusing) mask Charge after system: Beam 11.0 nC (Initial: 40 nC) 10-0.8 0.0 4.0 Normalized density X Head Tail (mm) x Charge distribution: 0.2 -10-**Triangle Before mask** After mask 0.0 -15-2 Ó 2 z (mm) (z-x) (z-x) 0.8 È 0.6 p o.4 alized Relativistic beam shaping: not sensitive from space charge \succ 0.2 N No bending magnet is used: synchrotron radiation free \succ 0.0 -4 -2 0 z (mm) z (mm) 1.0 Additional pre-UV shaping helps to increase charge capturing (x-y) (x-y) Sity 8.0 0.0 alized de High-charge (>10 nC) longitudinal bunch shaping is feasible 0.2 N -4 x (mm)x (mm)

* Discussion with the numerical simulations ** TDC: Transverse deflecting cavity

LPS = longitudinal phase space

UNIST collaboration: Double EEX beamline

 \triangleright

 \triangleright

UNIST collaboration: Double EEX beamline

UNIST collaboration: Double EEX beamline

LPS = longitudinal phase space

Research programs for beam manipulation

- Transverse emittance control
- > AI/ML-based phase space reconstruction

- > Flat beam generation and transform it back to round: S. Kim *et al.*, IPAC'23 presentation
- > Will also be used for asymmetric PWFA: Pratik Manwani, poster presentation @ PAHBB

- > Flat beam generation and transform it back to round: S. Kim *et al.*, IPAC'23 presentation
- > Will also be used for asymmetric PWFA: Pratik Manwani, poster presentation @ PAHBB

- Flat beam generation and transform it back to round: S. Kim *et al.*, IPAC'23 presentation
- > Will also be used for asymmetric PWFA: Pratik Manwani, poster presentation @ PAHBB

- Flat beam generation and transform it back to round: S. Kim *et al.*, IPAC'23 presentation
- Will also be used for asymmetric PWFA: Pratik Manwani, poster presentation @ PAHBB \geq

- > Flat beam generation and transform it back to round: S. Kim *et al.*, IPAC'23 presentation
- > Will also be used for asymmetric PWFA: Pratik Manwani, poster presentation @ PAHBB

S. Kim *et al.,* in preparation

S. Kim *et al.,* in preparation

UCLA collaboration: Alternating dielectric structure

For more details: <u>Walter Lynn, contributed talk at 16:00 (Tue)</u>

Refs: W. Lynn et al., In. Proc. NAPAC 2022.

> W. Lynn *et al.*, in preparation

U.S. Department of U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

SLAC / Uchicago collaboration: Al/ML-based reconstruction

- > For more details: Juan Pablo Gonzalez-Aguilera, contributed talk at 15:20 (Tue)
- > For more details on AI/ML: Auralee Edelen, invited talk at 17:25 (Thu)

Application to flat-beam and magnetized beam (Below: experimental data)

Characterization of flat-beam emittance, and magnetization (data under analysis)

Future plans on the beam manipulations @ AWA

Future plans on beam manipulations @ AWA

For high-brightness

- AWA drive linac upgrade (RF symmetric gun and linac, solenoid magnet)
- Machine study with tracking simulation (OPAL) to find the optimal beam parameters
- > AI/ML-based optimization

Future plans on beam manipulations @ AWA

For high-brightness

- AWA drive linac upgrade (RF symmetric gun and linac, solenoid magnet)
- Machine study with tracking simulation (OPAL) to find the optimal beam parameters
- > AI/ML-based optimization

For Beam Control

- Flat-beam generation with low longitudinal emittance
- Emittance partitioning using flat-beam and EEX beamline
- Demonstration of longitudinal bunch shaping using TDC-based system

Future plans on beam manipulations @ AWA

For high-brightness

- AWA drive linac upgrade (RF symmetric gun and linac, solenoid magnet)
- Machine study with tracking simulation (OPAL) to find the optimal beam parameters
- > AI/ML-based optimization

For Beam Control

- Flat-beam generation with low longitudinal emittance
- Emittance partitioning using flat-beam and EEX beamline
- Demonstration of longitudinal bunch shaping using TDC-based system

For AAC

- Asymmetric plasma wakefield acceleration using flat-beam
- High-TR, high-G wakefield generation using shaped bunch from TDC-shaper
- High-efficiency beam acceleration along collinear wakefield accelerator

AWA: facility for beam dynamics and AAC with advanced beam manipulations

Summary

Longitudinal bunch shaping studies @ AWA

- Real-time bunch shaping has been successfully demonstrated using EEX beamline and multi-leaf collimator: can be applied for bunch shaping for doorstep/double triangular distributions
- High charge beam can be shaped via TDC-based shaping system: we can achieve high-gradient
 + high-transformer ratio wakefield
- > Double EEX beamline: Novel method for arbitrary longitudinal phase space manipulation

Transverse beam control studies @ AWA

- Transverse stability against the wakefield can be controlled by using alternating dielectric structure accelerator
- Flat-to-round and back-to-round provides the flexibility of emittance partitioning for various applications such as hadron cooling, damping-ring-free injector, and asymmetric PWFA
- > AI/ML-based phase space reconstruction: novel beam diagnostics for 6D phase space + coupling

> Future plans for high-brightness beam and novel beam manipulations

AWA drive linac upgrade and machine study Actual demonstrations of emittance partitioning, bunch shaping, and CWA acceleration

Acknowledgements

Argonne National Laboratory

John Power, Gongxiaohui Chen Scott Doran, Wanming Liu Charles Whiteford, Eric Wisniewski

Northern Illinois University
Philippe Piot, Xueying Lu

> UCLA

James Rosenzweig, Gerard Andonian, Walter Lynn, Nathan Majernik (now at SLAC), Pratik Manawani

> SLAC

Auralee Edelen, Ryan Roussel

University of Chicago

Juan Pablo Gonzalez-Aguilera

> PSI, Switzerland

Andreas Adelmann, Sebastian Heinekamp

> UNIST, Korea

Moses Chung, Jimin Seok

Northern Illinois University

ACCE LABO

NATIONAL ACCELERATOR LABORATORY

PAUL SCHERRER INSTITUT

THE UNIVERSITY OF CHICAGO

Appendix: AWA Collaborations

Introduction to AWA facility

> Multipurpose R&D test facility for high-gradient, beam-driven wakefield accelerator

