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The transverse emittance of a charged particle beam is an important figure of merit for many accelerator
applications, such as ultrafast electron diffraction, free electron lasers, and the operation of new compact
accelerator concepts in general. One of the easiest to implement methods to determine the transverse
emittance is the phase advance scan method using a focusing element and a screen. This method has been
shown to work well in the thermal regime. In the space charge dominated laminar flow regime, however,
the scheme becomes difficult to apply because of the lack of a closed description of the beam envelope
including space charge effects. Furthermore, certain mathematical, as well as beamline design criteria must
be met in order to ensure accurate results. In this work, we show that it is possible to analyze phase advance
scan data using a fully connected neural network (FCNN), even in setups, which do not meet these criteria.
In a simulation study, we evaluate the performance of the FCNN by comparing it to a traditional fit routine
based on the beam envelope equation. Subsequently, we use a pretrained FCNN to evaluate measured phase
advance scan data, which ultimately yields much better agreement with numerical simulations. To tackle
the confirmation bias problem, we employ additional mask-based hni

DOL: 10.1103/PhysRevAccelBeams.25.094601

I. INTRODUCTION

Many modern particle accelerators are tuned to achieve
as small transverse beam emittance as possible. This is due
to the fact that most users demand the highest beam
brightness possible. Beam brightness is important for many
accelerator applications, such as ultrafast electron diffrac-
tion [1], free-electron lasers [2], and the operation of new
compact accelerator concepts in general (e.g., [3-6]). A
common definition of brightness is [7]

p= (1)

ree,’

where 7 is a form factor close to unity, / is the beam peak
current, and ¢, , is the horizontal and vertical transverse
emittance, respectively. Hence, in order to maximize B,
transverse emittance has to be minimal.

There are multiple methods to characterize the transverse
emittance. One of the most common techniques is the phase
advance scan technique, where the transverse beam size is
recorded on a screen vs the focusing strength of an
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upstream quadrupole or solenoid magnet [8-11]. The data
can then be fitted based on the beam envelope equation.
Alternatively, the beam images can be fed into tomography
algorithms to reconstruct the transverse phase space, from
which the emittance can be obtained [12,13]. Space charge
effects can be included to some extent [12,14,15]. Instead
of scanning the focusing strength of a magnet, also multiple
screens can be used to record the beam size vs the phase
advance. Other—potentially single-shot—methods involve
the insertion of masks into the beamline, which then,
subsequently, can be imaged on a downstream screen [16].
Coupled with advanced reconstruction algorithms, these
methods are capable of delivering reconstruction of the core
4D phase space [17]. In this work, we concentrate on the
phase advance scan technique, as this is the easiest one to
implement, only requiring standard beamline components.

One of the limitations of the phase advance scan
technique is that there is no closed description of the beam
envelope for space charge dominated beams [14,15]. It is
therefore difficult to apply the method in this regime [18].
Space charge dominated beams especially occur, for
example, in the injector part of high-brightness electron
sources, where the beam is still nonrelativistic. In order to
quantify whether a beam is space charge dominated, the so-
called laminarity parameter p can be calculated [19]. This
parameter represents the ratio between the space charge
term and the emittance term of the beam envelope equation.
It is given by
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Introduction / Motivation
My main project: The UHV experimental area at the ARES linac (DESY, Hamburg)

ARES goal: Generate and characterize ultrashort e- bunches (fs to sub-fs) with high stability
for applications related to accelerator R&D

Parameter EZT

Charge 0.03 — 250 pC
Momentum 50 — 160 MeV/c
Momentum Spread 104 (res. limited)

Transv. Norm. Emittance Down to ~70 nm.rad
Bunch Length ~ 20 fs (res. limited)

Gun Diagnostics

S-Band
Traveling Wave Structures (TWS)

Aperture:
High Energy Spectrometer

Experimental Areas 2&3

1um x 1mm

DESY. | PAHBB 2023 — San Sebastian | Frank Mayet

Page 3



ARES Gun Region

Options for an emittance measurement

« Phase advance scan on either the
first or second screen using the

Double solenoid TEM grid
i Pepper pot T B
Gu {A X ! pper p > N
i * Grid-based measurement on the
: \ second screen

Scintillating screen

| | | |  Low charge: TEM grid

0Om 0.4 1.3 2.4
m m m

v

* High charge:
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Premise

Why a new analysis method?

« Very first results, obtained using the phase advance scan technique and traditional data analysis
—> Turned out not to fit expectations; also any following measurement yielded generally too high values

pz = 3.45 MeV/c, z = 0.4 m, Cs2Te Cathode

E £o0 ==~ ASTRA Simulation -
C .
P H+ Horizontal
% 400 A H+  Vertical
£ 300 - .
©
N 200 A
'(—_U -
: S N N T
g 100 ] P e
-_H-___—
0.0 0.5 1.0 1.5 2.0 2.5 3.0

Beam Charge (pC)
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Premise

What could be the reason?

« The fit method does not take space charge into account!

* Other possible reasons:

* Numerical significance of the emittance could be too low

* For the horizontal plane: Beam diagnostics
- Screen image suffers from depth of field, because the angle
between screen and camera is 45°

Laminarity Parameter

o2

:m Ix =~ 17kA

0

p >> 1 2 Space charge dominated regime

DESY. | PAHBB 2023 — San Sebastian | Frank Mayet

pz = 3.45 MeV/c, z = 0.4 m, Cs2Te Cathode

|/ === ASTRA Simulation
+*+  Horizontal
4004 H Vertical

Normalized Emittance (nm)
w
o
o

0.0 0.5 1.0

1.5 2.0 25 3.0

Beam Charge (pC)

Fit Feasibility Criterion

2
z > (0.01
(7:%,0 - (02,0)"

2 _ g2 2
Oy *Mllo—ar,()
!
+ 2M11 M1204,0(02,0)

2 €2 2
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x,0
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pz = 3.45 MeV/c, z = 0.4 m, Cs2Te Cathode

Premise R
§400_ " Vertical
What could be the reason? g
« The fit method does not take space charge into account! 1]
.0 0.5 1.0Beam ér.;rge (pf:.)o 2.5 3.0
* Other possible reasons: )
) a’
» Numerical significance of the emittance could be too low o cf\“e“
» For the horizontal plane: Beam diagnostics ““es ‘,““‘\g
- Screen image suffers from depth of field * \ a

O . ?
between screen and camera is 4"'°0‘ depe“d mac“‘“e . “stead ’

Fit Feasibility Criterion

2
z > (0.01
U:%,o - (02,0)"

p >> 1 2 Space charge dominated regime

2 _ g2 2
op =M7i10% 0
/
+ 2M11 M1204,0(02,0)
2
2 x 12
+ My | 5= +(02,0)7 | -
0—1',0
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Simulation Study



Simulation Study

Phase Advance Scan Technique

« What data do we record?

« RMS beam size vs. solenoid current

e What do we want?

 Normalized emittance at the solenoid position

DESY. | PAHBB 2023 — San Sebastian | Frank Mayet

S-Band Gun Double Scintillating
(1.5 Cells) Solenoid Screen

N v v

Om 0.4 m 1.3m
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Simulation Study

Phase Advance Scan Technique

« What data do we record?

« RMS beam size vs. solenoid current

e What do we want?

 Normalized emittance at the solenoid position

- Potential training data must be constructed from two ASTRA simulations

« Tracking up to the solenoid position = Extract emittance

« Beam size vs. solenoid field at the position of the first screen
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S-Band Gun Double Scintillating
(1.5 Cells) Solenoid Screen

v ¥
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Simulation Study

Phase Advance Scan Technique

« What data do we record?

« RMS beam size vs. solenoid current

e What do we want?

 Normalized emittance at the solenoid position

- Potential training data must be constructed from two ASTRA simulations

« Tracking up to the solenoid position = Extract emittance

« Beam size vs. solenoid field at the position of the first screen
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S-Band Gun Double Scintillating
(1.5 Cells) Solenoid Screen

v ¥
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Simulation Study

Methodology

« Training data produced with parallelized ASTRA on the DESY HPC cluster (10k macro particles)

Data Set

Data

*  Beam size at the screen (M = 40)
*  Solenoid field strength (M = 40)

= Interleaved combination
(20 points centered around the minimum)
> Min =20+ 20=40

Label

Emittance at the solenoid

Beam size at the solenoid

Beam divergence at the solenoid
Bunch length at the solenoid

ASTRA parameter XYrms (laser spot)
ASTRA parameter Trms (emission time)
*  ASTRA parameter Qbunch (charge)

9 Mout = 7

DESY. | PAHBB 2023 — San Sebastian | Frank Mayet

——————— 1
| Split Data Sets I N
________ Nva'.ll
I *  Nga Training Sets Ntes
*  Nya Validation Sets I

1 . Nies Test Sets

N =16,066
Ntz = 0.6 * N (Training)

...determined via convergence study...

Parameter Value
Bunch charge [0.01,2.1] pC
Laser spot size (flat top diameter) [240,400] pm
Cathode emission time (rms) [60, 100] fs

Laser input parameters according to these
ranges — uniformly distributed

Nya = 0.2 * N (Performance validation during the training)
Nies = 0.2 * N (Performance validation after the training)

NN-Layout (3 hidden layers):

I\/Iin - | IVlin - I\/Iin/2 - I\/lin/2 | - I\/lout

Fully connected with ReLU activation
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Simulation Study

Data — Let’s check the fit feasibility criteria...

Color: Laser Spot (um)

H (o)} (o0]
o o o
o o o
o o o

] ] ]

2000 -

Laminarity Parameter

0.0 0.5 1.0 1.5 2.0
Charge (pC)

Distribution (N=16066)

0 2000 4000 6000 8000
Laminarity Parameter
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Count

Color: Laser Spot (um)

w
o
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N
o
1

Should be > 10...

Fit Feasibility Parameter (x1000)
=
ul

1.0 -
0.5 A
0.0 A
0.0 0.5 1.0 1.5 2.0
Charge (pC)
Distribution (N=16066)
10000 A
0 e e s T
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Simulation Study

Data — Let’s check the fit feasibility criteria...

Color: Laser Spot (um) S Color:

inarity Parameter

275
250

. 15 2.0
Charge (pC)
Distribution (N=16066)

N

4000 6000 8000 00 05 10 15 20 25 3.0
Laminarity Parameter Fit Feasibility Parameter (x1000)
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Simulation Study

Results — Test data sets

80

60 -

40 A

Mean Relative Error (%)
[Emittance @ SOL]
N
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Simulation Study

Results — Test data sets — Not only transverse emittance!

o4 200 A : . 100
100 A
X
pl 0 -
o N AR
LE s o . . o :- : -- H .
=5 e P '___________:_.:._, —100 -
I | —200 - . .
_10 1 1 1 1 1 1 _100 1 1 1 1 1 1 1 1 1
250 300 350 70 80 90 05 1.0 15 20 60 70 80 90 100
Laser Spot (um) Emission Time (fs) Charge (pC) Norm. Emittance (nm)
04—} 104+ 40 A Ox, las
a R PR 5 - Ot, las
X
5 0 = [eeatt———— () A
0 Q
_5 e _5 -
— <1%
—_— <5%
10+ b — — —10 1 — — — T <10% &n,x,s0L Ox, soL
0.500.751.001.251.50 1.0 1.5 2.0 2.5 3.0 20 40 60 80 100120 Radar plot: Prediction performance in terms of
Beam Size (mm) Divergence (mrad) Bunch Length (um) the number of data sets in 1 %. 5 % and 10 %
relative error intervals
...detailed discussion and table in the paper...
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Experimental Results

Extension to measured data

;\3 100 A
© 95-
L
X
To) ]
= 90
(@)
O
m 85 -
[
o
r—; 80 1 —e— Trained on ideal data
o . .
Q Trained on noisy data
75 - 1 1 1 1 1 1
0.0 0.2 0.4 0.6 0.8 1.0

RMS Beamsize Error (%)
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« Data is not perfect in reality
» Uncertainty on beam sizes / B-fields
« Scan range
« Scan point spacing
» Absolute value of the B-fields

« Trained on noisy data
* From each data set:
* 100 noisy sets with relative errors
* 100 noisy sets with abs. errors
« With and without beam size resolution limit
« Based on typical ARES values
« 2> 2(2*100 + 1)*N = 6,458,532 sets
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Experimental Results
Measurements performed at ARES Recall...
140
---- ASTRA (mean) g:—|
€ 1201 H] Traditional Fit
& L ===
The FCNN results are ° i NN Prediction
much closer to the c 100 -
expected values than the S
results obtained from the IS 80 -
traditional fit! -
S
S 60
40 I I 1 I

0.0 0.5 1.0 1.5 2.0
Charge (pC)
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Experimental Results

Measurements performed at ARES — Other predicted parameters

Charge dependent parameters

. 20 M g 100 - W
Fixed machine parameters g t? P £ 4 i
% 1.0 v g . /mﬁ"m
= 5 0.5 1 A S o
Parameter Prediction Experiment 0.04 M 2 257 i#i[
Laser Spot Size (nm) 338.5+0.5 320 + 30
Laser Pulse Length (fs, rms)  87.34 +0.04 76+ 8 _ S |
Solenoid Field — Start (mT) 130.516 +0.001 130.5+0.1 E 1237 —sﬁ’lﬁ_{ £ ’M
Solenoid Field - End (mT)  150.783 +0.001 150.7 £0.1 g 1,00 P 9, P o
£ 0.751 4’” g 7
2 0.50- / g |
We actually suspect a larger laser spot, | | | | | ° L | | | |
because we can extract more charge at 00 05 10 15 20 00 05 10 15 20
Charge (pC) Charge (pC)

the moment than should be possible

Blue dashed line: Simulation with the
predicted laser parameters
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Conclusion

« A pre-trained FCNN can be used to predict the transverse emittance from phase advance scan data, even in
setups where the traditional fit method does not work anymore

« The FCNN was adapted to real-world data and used to analyze measurements conducted at ARES

« During the same measurement run, mask-based emittance measurements showed that the machine can indeed be described with
ASTRA (= confirmation bias)

« Measurement results obtained using the fit method show wrong results, with the expected charge dependence.
This dependence was discovered from the large number of produced data sets (~16k)

« The pre-trained FCNN also predicts other fixed and charge dependent beam parameters to varying accuracy.
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Conclusion

« A pre-trained FCNN can be used to predict the transverse emittance from phase advance scan data, even in
setups where the traditional fit method does not work anymore

« The FCNN was adapted to real-world data and used to analyze measurements conducted at ARES

« During the same measurement run, mask-based emittance measurements showed that the machine can indeed be described with
ASTRA (= confirmation bias)

« Measurement results obtained using the fit method show wrong results, with the expected charge dependence.
This dependence was discovered from the large number of produced data sets (~16k)

« The pre-trained FCNN also predicts other fixed and charge dependent beam parameters to varying accuracy.

Thank You!
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Methods

Phase advance scan

* Retrieve the emittance, based on the beam envelope equation .
How to get the emittance?

« Find scannable transport matrix elements M, andM,, - : Fit the envelope equation! ===
Ingredients below !

* Drift > Multiple screens

« Focusing element - Adjustable focusing strength o2 =M{ o2,

| T |

| / |

Fit Result: &ny,ms = 179.4 & 4.0nm, £,yms = 91.1 & 2.0nm, Nyc = 500 i + 2M11M12Uw,0(0:c,0) i

——— Fit (x), x2 = 11.47, Ng = 14 : g2 |

100 1 = v . 2 x 2 !
Y — == Fit (y), x2 = 1.00, Ns; = 14 ! + M12 ('02 + (U'x,O) : !

\\@ A Measured data (x) i z,0 i

90 1 \\\ A Measured data (y) ' |

N 1 1

] ' '

AN ' Mps =My -Mp-M |

801 M ! ps = M, - Mp - My, :

El | i
\EL/ \\\\ | 1 0 1 lD 1 0 |
o 70 : = . . |
5 Ny | —5 1 0 1 -5 1 |
£ = “a : |
& 60 N NSl : 1—Ip/f Ip ) !
w o] "ﬁ'\\ PR : — 2 Y :
2 - T : (1o —2)/* 1=In/f :
50 7_!‘ ‘\,-‘.~ ‘_*_”l--l - 1 1

~ S~ L b - e ! 1

Seo _F : :

ey - ' :

40 7 s /a" | 2 ! i
&g\ P | B . q F 1

o ’/*( ' f( z,max) — 2 '

30 el N ! 2(p=) :
l-k___._‘___”—’ : :

—0.148 —0.147 0146 —0.145 —0.144 L0143 T
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Methods

Phase advance scan

 Limitations

DESY. | PAHBB 2023 — San Sebastian | Frank Mayet

Pros Cons
 Measurement is easy to perform * It's a scan-based measurement
» Tools available on many beamlines and thus
per default « ..takes time
« Data analysis is in principle easy « ...is inherently multi-shot

Mathematical criterion originating from the
envelope equation - Relative significance
of the emittance! Is it numerically buried?

82

thesis) = > 0.01

Feasibility considerations (see e.g. Max Hachmann’s diploma 5 5
S 030 (0xp0)

« Constraints on beam size and divergence at the focusing element

» Constraints on the setup (distance between focusing element and screen; available focusing strength)
Numerical problems (e.g. sine oscillation of the fit result, based on the position of the minimum w.r.t. the sampling)

Space charge not included! - May lead to overestimation of the emittance
(can be tackled somewhat 2 Add perveance term)

Space charge and non-linearities during the scan! (Emittance changes during the scan, etc.)
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Methods

Grid-based measurement

* Retrieve the emittance, by mapping the x-x’ phase space using a mask

» Scan either a slit (multi-shot), or use dense slit mask (single shot) Screen

» Both planes can be measured at the same time, by using a hole pattern

« Try to sample the phase space with as many beamlets as possible to determine
the overall emittance as good as possible — Otherwise: Emittance in a subspace!

Each analyzed beamlet adds a spot in the x-x’ phase space — the weighted
area in phase space is then proportional to the emittance at the mask

« Itis also possible to analyze shadow images of grid bars instead of beamlets > Notanalyzing allbeamlets is ke collmating the beam and ihe emitance wil
= Ideally the mask is scanned to map even more details (but then: scan...)

« Beamlets: Characterize beamlets directly, by measuring their size
How to get the emittance? !

« Grid bars: Determine beamlet properties, by fitting two error functions to the shadow rooooes ¥ Caloulate moments! Iehhhhhbh
! ngredients below !

« The resolution depends on both the feature size of the mask and the detection

i . Xz L — X R Ung i

system i T, = JL J Oal, = T i

« If the features of the mask are small enough, space charge during transport to |
. . | 2 S :

the screen is not an issue ' (2?) = 25 Ligi (22} = 25 LijvisTiy ;

i zij IZJ Zij Im i

i o2y = i (75 +2,) 5

. . . ! X = 1

zzcorreltgtion terms c;n! ;Tso bet(t:alculated,bbut ar: Igmitt);[ed foci brevity) i Zij Iij i
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Methods

Pros

Single shot!

Space charge dominated beams
can be measured, as the beamlets
are not themselves SC dominated

Cons

 Limitations

Needs small mask features and
high-res diagnostics

Is a dedicated setup

Might not measure the beam you
actually want to use (see below)
Data analysis is surprisingly tedious

» If the ratio between feature size and thickness of the mask don’t match, an angle cut can underestimate the emittance

» The mask might be difficult to manufacture (TEM grids are readily available commercially though)

» Distance to the screen determines the max. emittance that can be measured - Beamlets overlap at some point

» Screen resolution determines the minimum emittance that can be measured via beam size measurement

» Space charge can still be an issue if the features are too large

« Space charge and non-linearities are still an issue in the sense that the beam needs to be focused before the grid

(need diverging beam!). - This can lead to emittance growth between the focusing element and the grid
- Measurement still correct, but the beam might not be the same compared to the nominal working point!

DESY. | PAHBB 2023 — San Sebastian | Frank Mayet
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Neural Networks

A short primer

« Artificial neuron
Cell body

Axon Telodendria ~
@y C
Nucleus / |
=2 v
</
_ r Axon hillock Synaptic terminals
-

Golgi apparatus
Endoplasmic
reticulum

Mitochondrion \ Dendrite

/ J A\ Dendritic branches

https://en.wikipedia.org/wiki/Neuron
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Neural Networks

A short primer

o Artificial neuron

Axon

Synaptic terminals

Dendrite

https://en.wikipedia.org/wiki/Neuron
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Neural Networks

A short primer

« Atrtificial neuron / Perceptron

Artifical

Biological

DESY. | PAHBB 2023 — San Sebastian | Frank Mayet

4
A
tanh()
sigmoid()
ReLU() - > 0ifb+y <0, else b+y
Rectified Linear Unit
- Most common
. Biased .
Input  Weights Node Activation Output
. Synaptic
Dendrites Nucleus Axon y .p
Terminals
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Neural Networks

A short primer

 Most basic neural network

« Can only classify linearly separable data sets

« The weights can only appear to 15t order

————

O Q Q °ee Q O O
N ,
\ ’

N
N/
~
\\ 7 \ 7
VA
VN, N
\ 7
R2Y x
) <
ARV
1 N
-
N ,
NaM 1,
SN
'y

Input Output
Layer Layer

Fully connected, or densely coupled
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Neural Networks

A short primer

« Simple general purpose neural network
« Can have an arbitrary number of hidden layers of
arbitrary width (i.e. number of neurons)

* Networks with more then one hidden layer
- Deep neural networks

* Ingeneral: 1IL+NHL+10L

« Asingle sufficiently large hidden layer is
adequate for approximation of most functions

« Why more than one hidden layer then?
- The problem is: What is ‘sufficiently large’?

000000

« ...There are many variations of this, for example
Convolutional Neural Networks (CNN), which .
: . Input Hidden
reduce the number of connections, which can Layer Layer

speed up the process for large input widths

Can include normalization
(e.g. softmax for probability distributions)

/

Output
Layer

D. Stathakis (2009) How many hidden layers and nodes?, International Journal of Remote Sensing, 30:8, 2133-2147
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Neural Networks

A short primer

« How to train the network?

» Most basic: Supervised learning
« Labeled data sets
» Feedforward + Backpropagation

* Gradient descent

O Q Q °e Q O O
N
\
N
\
N/
~
,
v
/ N,
X 0%
3¢
v’
<%
P29
a
sl 7
N\Y»
v
A
n
1
1
]
]
(N
1
Y,
"
LN
L
LEEVAAN
[ e
1
’
’
’

Input Hidden Output
Layer Layer Layer
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Neural Networks

A short primer

« How to train the network?

» Most basic: Supervised learning
« Labeled data sets
» Feedforward + Backpropagation

* Gradient descent

Input Hidden Output
Layer Layer Layer
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Neural Networks

A short primer Classifier > Handwritten Digits

Label (we know the correct result)

NS
NN S~
NN
NS \\\
(NI <
~ AN ~
T~ N RS
DR TN ~o
\\\\ NN ~
N Nl -~
I N PR
NN . ~>s
~ ‘)\ Se---""7
------ P
. cesm NN . ]
N N \/,'/ S T T e-—l L
n u N ~\\\ \ \v’\(/ S~ T TE=—al
~ \\\\ SISO SO - o
: ISR Taest Tl Output - Probabilit
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Examples from the O
MNIST Dataset

Input Hidden Output
Layer Layer Layer

DESY. | PAHBB 2023 — San Sebastian | Frank Mayet Page 36



Neural Networks

A short primer

Classifier > Handwritten Digits Learning procedure

1. Step: Initialize random weights and biases

000000
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Neural Networks

A short primer

Classifier - Handwritten Digits Learning procedure
1. Step: Initialize random weights and biases
2. Step: Operate the network in feedforward
mode > Forward pass
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Neural Networks

A short primer

Classifier > Handwritten Digits Learning procedure
1. Step: Initialize random weights and biases

% 2. Step: Operate the network in feedforward

~~ mode > Forward pass

3. Step: Calculate the loss function based on

. e 1 the data label (for example MSE)
PN RN @ 0.0

4
/, ,< 2
. ’ N ’ -
’ - < - -l
. ’,,-‘ ’ KON R4 __:': 0 14 1 0
e 4",' A \‘\\ PR L . -
- ’ S ———
- ’ < ANRY -
4 .

000000
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Neural Networks

A short primer

Classifier > Handwritten Digits Learning procedure

Q 1. Step: Initialize random weights and biases
oa 2. Step: Operate the network in feedforward
O RN mode > Forward pass
R 3. Step: Calculate the loss function based on
O NN Q 1 the data label (for example MSE)
AN, 2 T @ 0.0 4. Step: Propagate the loss back through the
. S Q e 5 network towards the input and
. “p /,/i:jf:‘:‘:\. @ 10 adjust the weights according to a
O i Y Q S gradient descent algorithm
e - Backpropagation
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Neural Networks

A short primer

Classifier - Handwritten Digits

1. Step:
. Step:
~
% 2. Step:
NN . .
SO
N S~
NN
RN
\ S
‘\\‘:~~\\ N AN .
S TS ~
RN "~ b
N \ N~ ~ . .
A W~ ~
\\\ s~\ \\
N A S~

RO 2

O O Q oo Q Q O
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A
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[NV
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No¥
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Iy,
[
[N |
1
I
/
/
/

A2

NSRRI 1
N @ oo 4. Step:

Learning procedure

Initialize random weights and biases
Operate the network in feedforward
mode > Forward pass

Calculate the loss function based on
the data label (for example MSE)
Propagate the loss back through the
network towards the input and
adjust the weights according to a
gradient descent algorithm

- Backpropagation

e - Do this for all training data sets
This is then called a training epoch
Train the network for many epochs until

the loss function converges
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Neural Networks

A short primer

Classifier > Handwritten Digits Learning procedure

1. Step: Initialize random weights and biases

e - Do this for all training data sets

This is then called a training epoch
Train the network for many epochs until
the loss function converges

Q e 2. Step: Operate the network in feedforward
O R mode > Forward pass
R 3. Step: Calculate the loss function based on
O N N Q ] the data label (for example MSE)
RN T @ oo 4. Step: Propagate the loss back through the
: SRS Q T network towards the input and
* <‘“;> e @ 10 adjust the weights according to a
O S Q S gradient descent algorithm
- Backpropagation

A2

Prediction is just a normal forward pass
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Neural Networks

A short primer

Classifier - Handwritten Digits
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O -
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O

O 5

O 3

Learning procedure

Initialize random weights and biases
Operate the network in feedforward
mode > Forward pass

Calculate the loss function based on
the data label (for example MSE)
Propagate the loss back through the
network towards the input and
adjust the weights according to a
gradient descent algorithm

- Backpropagation

Do this for all training data sets

This is then called a training epoch
Train the network for many epochs until
the loss function converges

Prediction is just a normal forward pass
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Neural Networks

A short primer

Classifier - Handwritten Digits Learning procedure
1. Step: Initialize random weights and biases
2. Step: Operate the network in feedforward

RN mode > Forward pass

SN 3. Step: Calculate the loss function based on

N N Q 1 the data label (for example MSE)
I Sz (0ss) 0o 4 Step: Propagate the loss back through the
DT O T T network towards the input and

____::1‘:\. @ 10 adjust the weights according to a
”””” gradient descent algorithm
- Backpropagation

Do this for all training data sets

This is then called a training epoch

the network for many epochs until
0Ss function converges

on is just a normal forward pass
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