

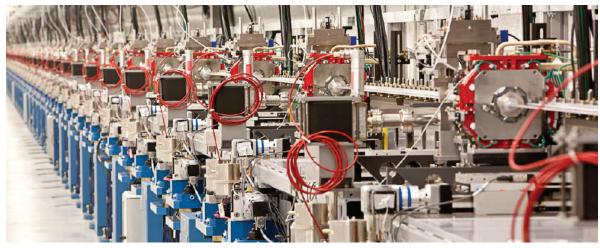
Towards End-to-End Differentiable Modeling of Particle Accelerators

J. P. Gonzalez-Aguilera*, Y.-K. Kim

Department of Physics and Enrico Fermi Institute, University of Chicago, Chicago, IL

R. Roussel, A. Edelen, C. Mayes *SLAC National Accelerator Laboratory, Menlo Park, CA*

Motivation



https://lcls.slac.stanford.

- Many parameters
- Nonlinear beam response
- Limited beam diagnostics
- Must meet beam quality objectives

Challenges:

- Design
- Control
- Model calibration

Optimization

 We need fast and accurate gradient information for high-dimensional gradient-based optimization.

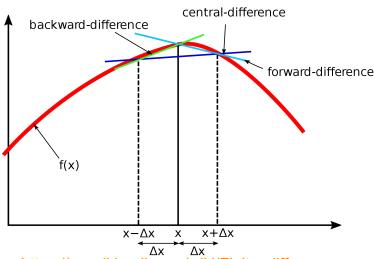
Usual way to calculate gradients

Numerical differentiation / finite differences

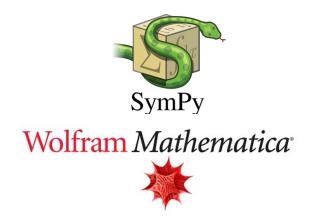
- Numerical errors
- Unstable in many situations
- Computationally expensive
- Scales badly with dimensions

Symbolic / analytical differentiation

- Complicated mathematical expressions
- Infeasible in complicated computer functions / routines
- -Scales badly with dimensions



https://en.wikipedia.org/wiki/Finite difference



Automatic Differentiation (AD)

Computers execute primitive operations/functions

- Routines are composed sequences of these primitive operations
- AD uses the derivatives of these primitive operations and the **chain rule** to evaluate the derivative of a computer function w.r.t. any input
- Results in
 - -fast derivatives (linear in the cost of computing the value)
 - -numerically stable
 - -working precision

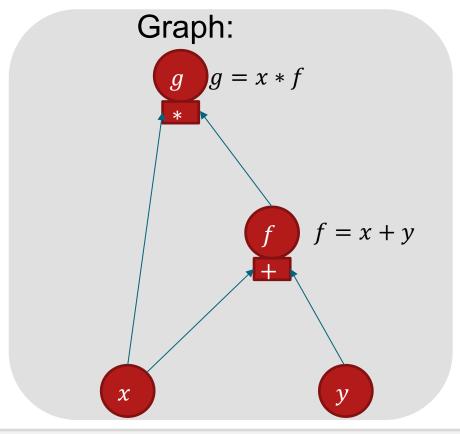
Automatic Differentiation Example

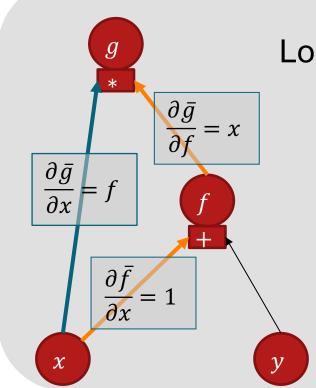
$$f(x,y) = x + y,$$

$$g(x, f(x,y)) = x * f(x,y),$$

$$x = 3,$$

$$y = 2.$$





Evaluate $\partial g/\partial x$.

Look for paths from *g* to *x* and use chain rule:

$$\frac{\partial g}{\partial x} = \frac{\partial \bar{g}}{\partial x} + \frac{\partial \bar{g}}{\partial f} * \frac{\partial \bar{f}}{\partial x}$$

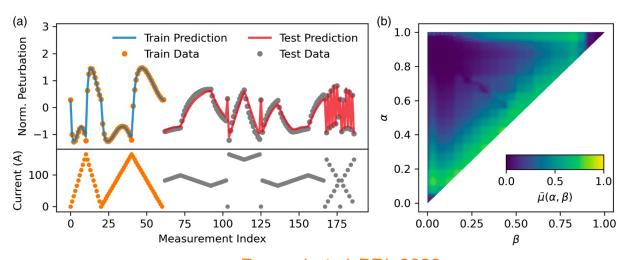
$$= f + x * 1$$

$$= x + y + x$$

$$= 2x + y = 8.$$

AD in Accelerator Modeling

- "Differential Algebraic" beam dynamics (1988, M. Berz, doi.org/10.2172/6876262)
 - Uses AD to calculate derivatives of phase-space coordinates
 - Enables computation of arbitrary order Taylor maps
 - Can add beamline parameters as "knobs"
- Modeling of hysteresis in accelerator magnets
 - −AD enables gradient based optimization of ~ 7K mesh points

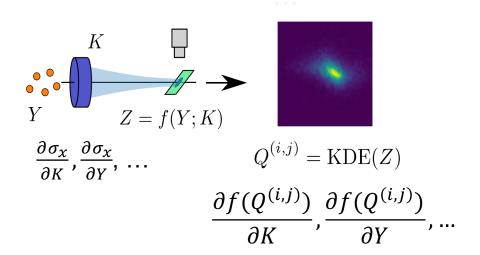


Roussel et al. PRL 2022

Differentiable Accelerator Modeling

But we want **fully differentiable** accelerator modeling:

- Use AD to evaluate derivatives of any output w.r.t. any input
- Enabling high-dimensional gradient-based optimization of any output



How:

- Implementation of Bmad* standard tracking routines in Python in a library agnostic way
- Can be used with PyTorch, Numba, etc.
 - Automatic Differentiation
 - JIT compilation
 - GPU support
 - ML Modules: NN, Optimization, ...
- Current elements:

* classe.cornell.edu/bmad/

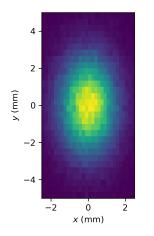
Library Agnostic Tracking

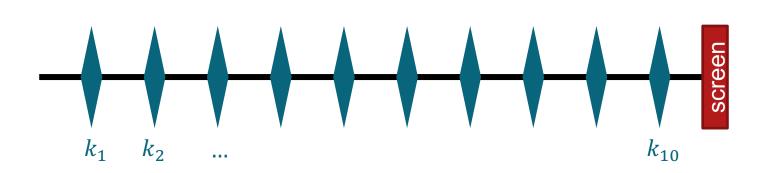

```
def make_track_a_crab_cavity(lib);
                      """Makes track_a_crab_cavity given the library lib."""
                       sart = lib.sart
                       sin = lib.sin
                       cos = lib.cos
                       track this drift = make track a drift(lib)
Elementary
                      offset_particle_entrance = make_f(lib, 'offset_particle_entrance')
                       offset particle exit = make f(lib, 'offset particle exit')
functions
                       particle_rf_time = make_f(lib, 'particle_rf_time')
                       def track_a_crab_cavity(p_in, cav):
                           """Tracks an incomming Particle p_in through crab cavity and
                           returns the ourgoing particle.
Auxiliary
                          See Bmad manual section 4.9
functions
                           s = p_in.s
                          p0c = p in.p0c
                          mc2 = p in.mc2
                          l = cav.L
                          x off = cav.X OFFSET
                          y_off = cav.Y_OFFSET
                          tilt = cav.TILT
                          par = offset_particle_entrance(x_off, y_off, tilt, p_in)
                          par = track_this_drift(par, Drift(l/2))
                          x, px, y, py, z, pz = par.x, par.px, par.y, par.py, par.z, par.pz
Elementary
                          voltage = cav.VOLTAGE / )0c
                          k_rf = 2 * pi * cav.RF_FREQUENCY / c_light
operations
                          phase = 2 * pi * (cav.PHTo - (particle_rf_time(par)*cav.RF_FREQUENCY))
```


PyTorch autograd example:

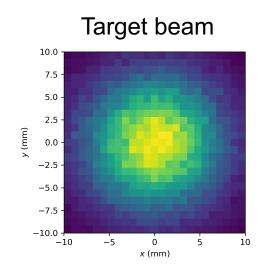
```
track_a_quadrupole_torch = track.make_track_a_quadrupole(torch)
f quadrupole = lambda x: track a quadrupole torch(track.Particle(*x.ts. tp0c. tmc2), q1)[:6]
from torch.autograd.functional import jacobian
J = jacobian(f_quadrupole, tvec1)
mat_py = torch.vstack(J)
mat_py
tensor([[ 9.503167431875498e-01,
                                  9.853541097581728e-02.
                                                          0.000000000000000e+00.
                                  0.000000000000000e+00, -1.924858550317723e-04],
          0.000000000000000e+00,
        [-9.833834015386563e-01.
                                  9.503167431875498e-01, -0.000000000000000e+00,
          0.0000000000000000e+00,
                                  0.000000000000000e+00, 1.149663908944082e-04],
        [ 0.00000000000000e+00,
                                  0.000000000000000e+00, 1.050519938506054e+00,
          1.018821577510623e-01,
                                  0.000000000000000e+00, 2.569093937337833e-04],
        [-0.000000000000000e+00.
                                  0.000000000000000e+00, 1.016783934355602e+00,
                                  0.000000000000000e+00, 1.017485822657404e-04],
          1.050519938506054e+00,
        [ 8.003290869842023e-05, -1.942507914386516e-04, 1.543324297486644e-04,
                                 1.000000000000000e+00, 1.756709202142694e-05],
          2.595220753974964e-04,
        [ 0.00000000000000e+00.
                                  0.0000000000000000e+00.
                                                          0.0000000000000000e+00,
          0.0000000000000000e+00.
                                  0.000000000000000e+00, 1.0000000000000e+00]],
       dtype=torch.float64)
```


Application 1: High-dimensional Optimization

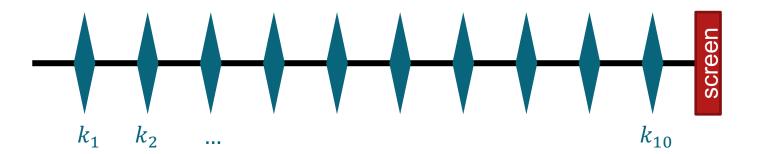


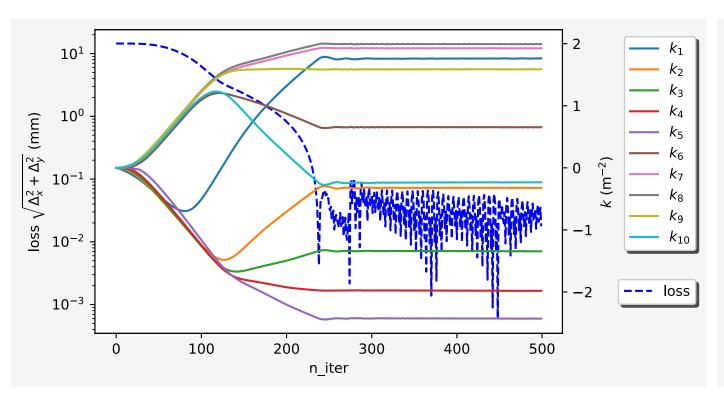


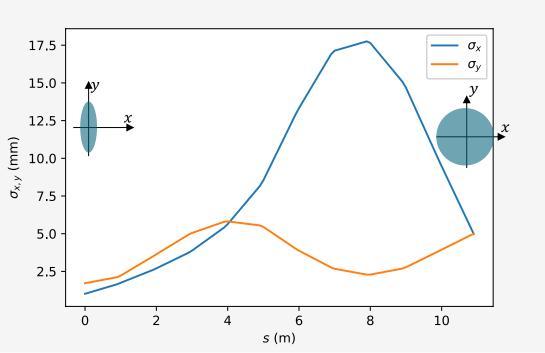
- Target: round beam with $\sigma_{\rm t} = 5.00 \, {\rm mm}$
- $\min \sqrt{(\sigma_x \sigma_t)^2 + (\sigma_y \sigma_t)^2}$
- Free parameters: $\{k_1, ..., k_{10}\}$
- Optimizer: ADAM



Results: 10 Quad Optimization



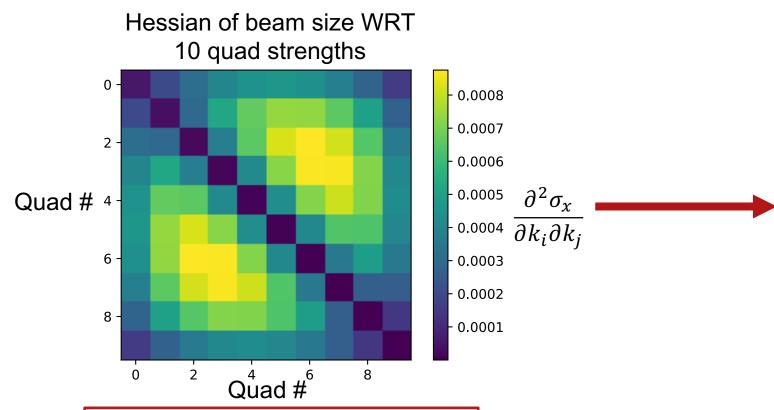




Application 2: Arbitrary derivative computation

Derivatives of any output WRT any input, regardless dimension and order.

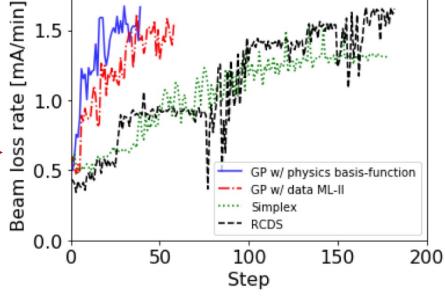
Example:



2 orders of magnitude faster than

numerical differentiation

Physics informed Gaussian process for online optimization



Online machine optimization -Comparison of optimizers

A. Hanuka et al., PRAB (2021)

Application 3: Model Calibration

We want:

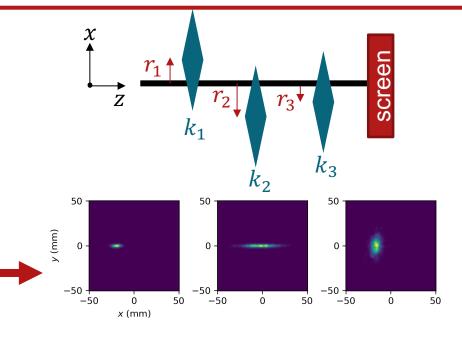
• Find x offsets $\{r_1, r_2, r_3\}$ of 3 quads

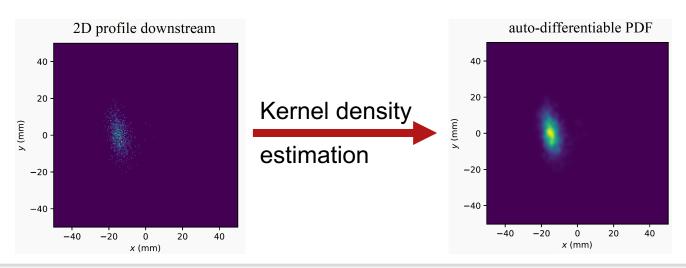
We have:

- 3 x-y "ground truth" beam profiles downstream
- 3 different sets of $\{k_1, k_2, k_3\}$

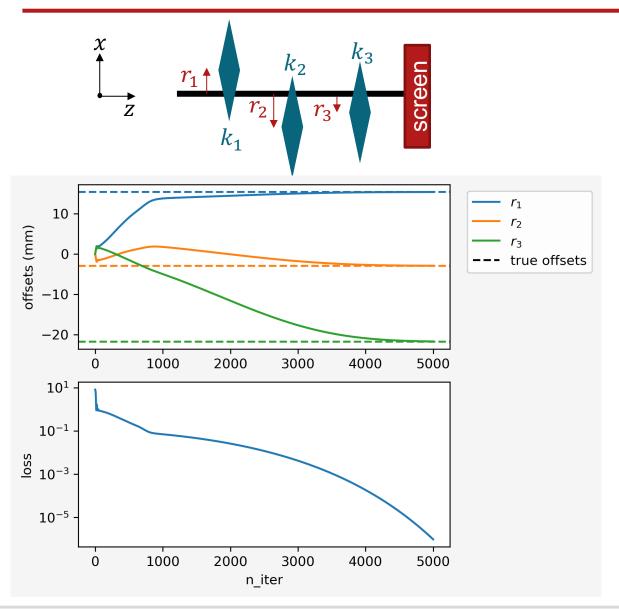
Procedure:

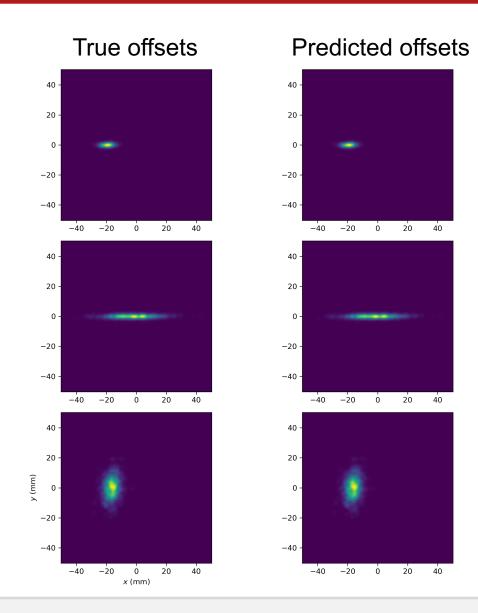
- $\{r_1, r_2, r_3\}$ such that beam profiles are as close as possible to ground truth
 - -Loss function: KL Divergence
 - Differentiable beam profiles



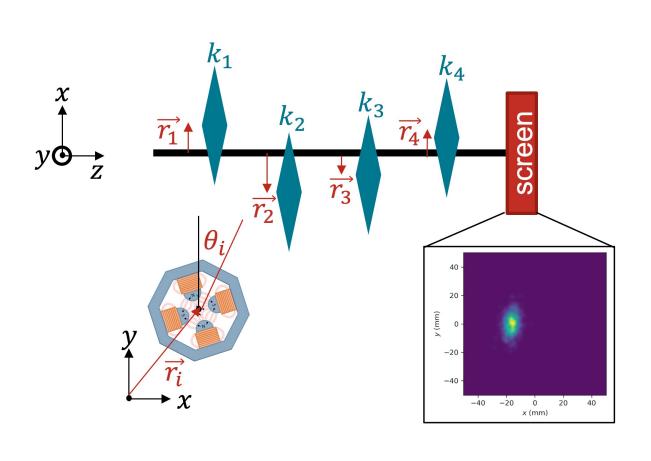


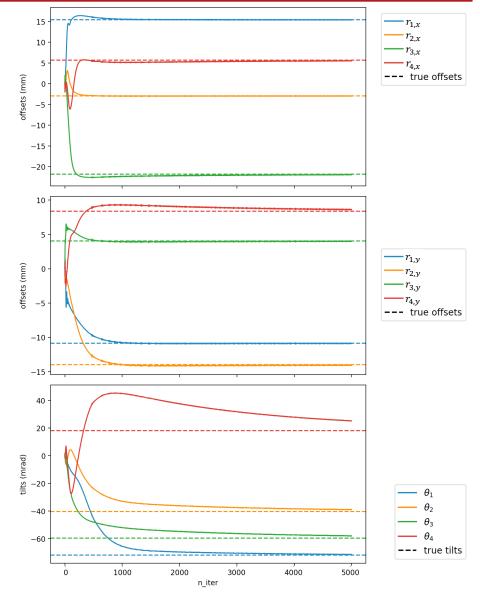
Results: Model Calibration

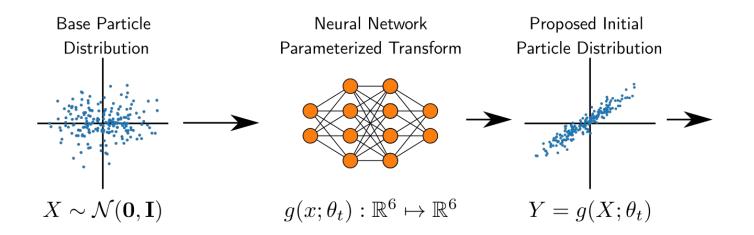


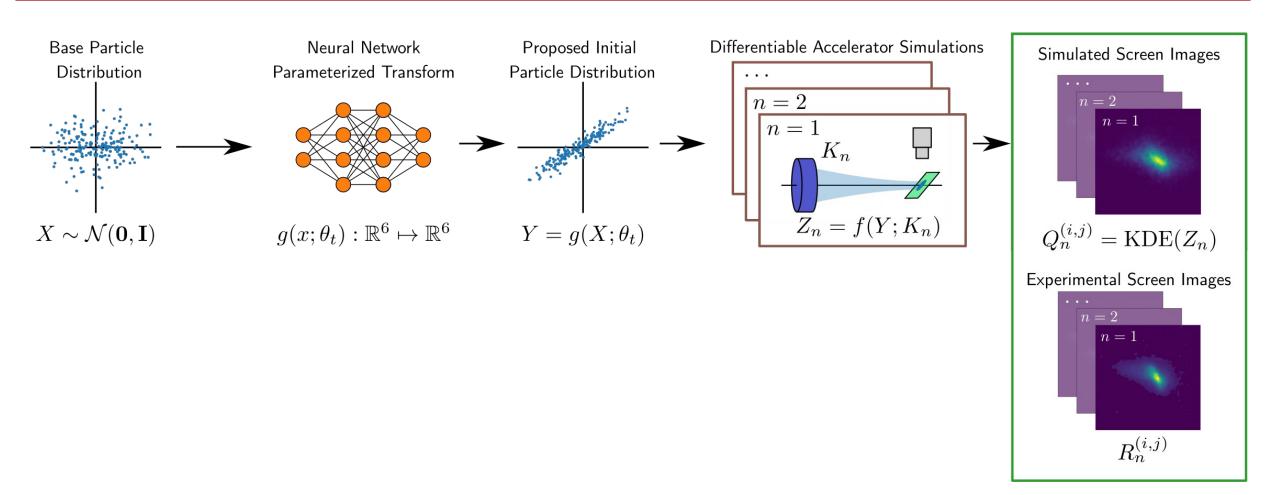


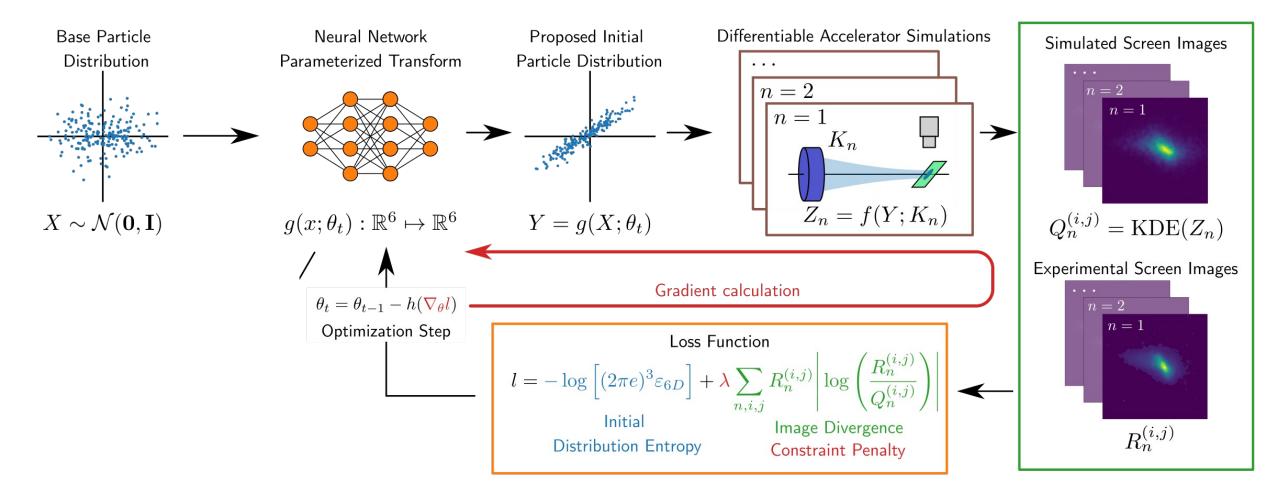
Model Calibration: 2D Offsets and Tilt

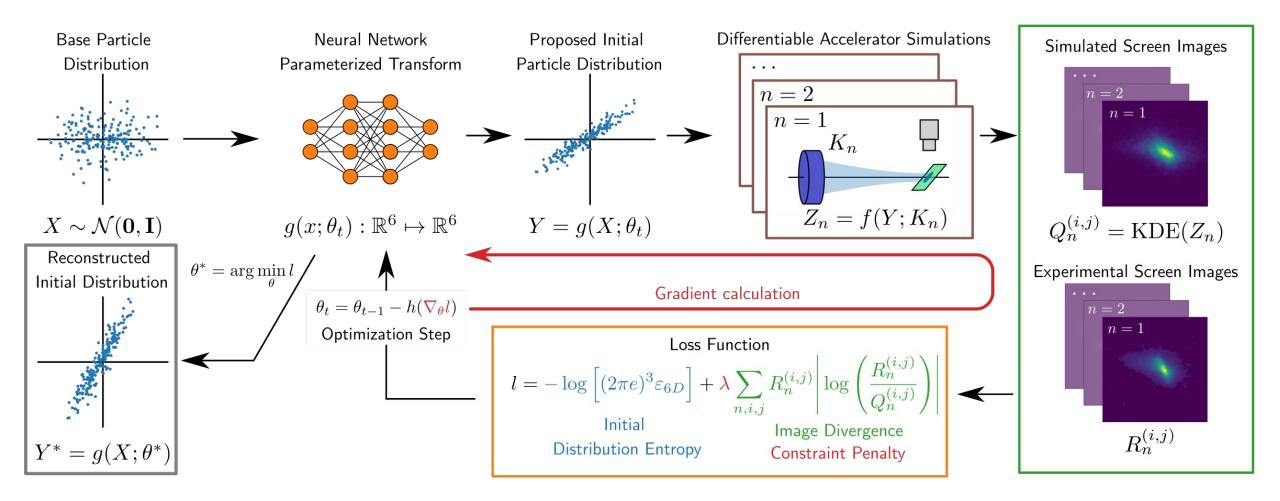




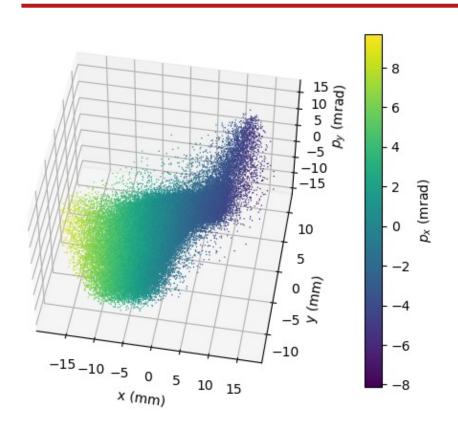


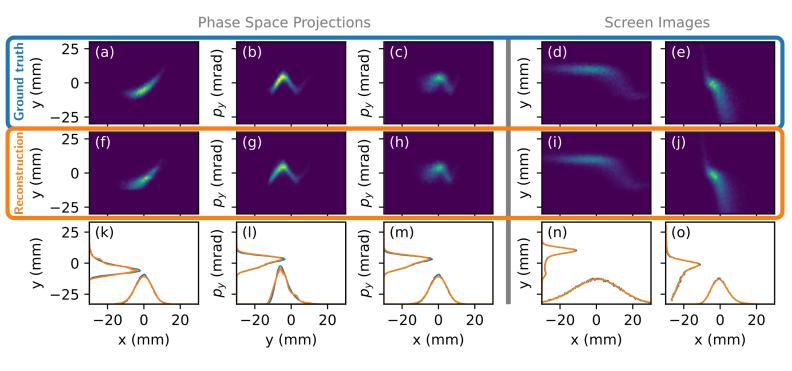






PS Reconstruction (Synthetic)

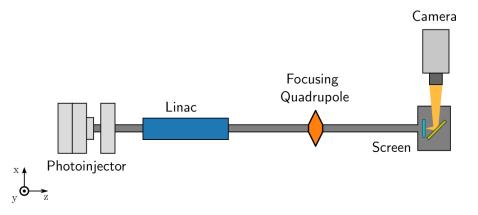


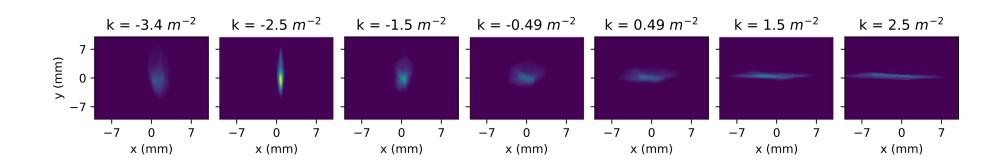


Parameter	Ground truth	RMS Prediction	Reconstruction	Unit
ε_x	2.00	2.47	2.00 ± 0.01	mm-mrad
$arepsilon_{m{y}}$	11.45	14.10		mm- $mrad$
$arepsilon_{4D}$	18.51	34.83*	17.34 ± 0.08	mm^2 - $mrad^2$

arXiv:2209.04505

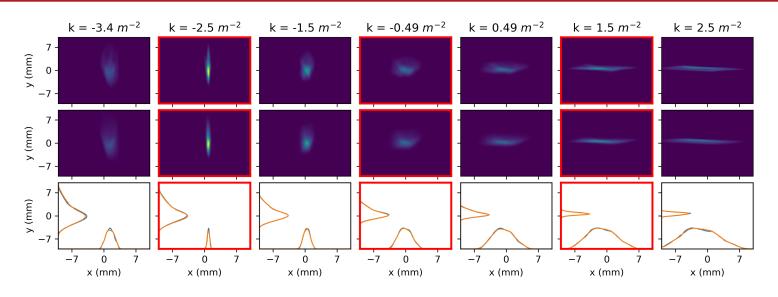
PS Reconstruction (Experiment at AWA)

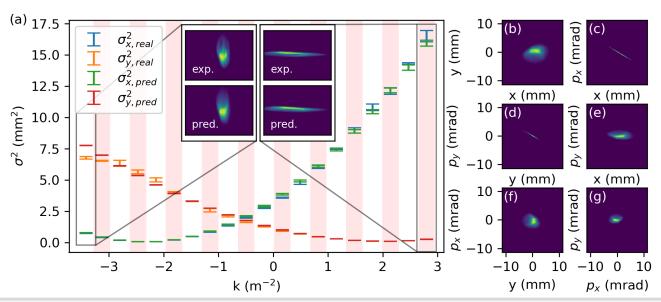




arXiv:2209.04505

PS Reconstruction (Experiment at AWA)





Parameter	RMS Prediction	Reconstruction	Unit
$\overline{arepsilon_{x,n}} \ arepsilon_{y,n}$	4.18 ± 0.71 3.65 ± 0.36	4.23 ± 0.02 3.42 ± 0.02	mm-mrad mm-mrad

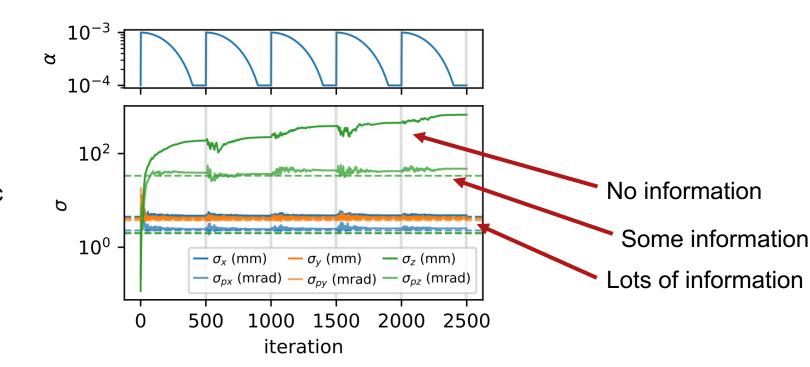
arXiv:2209.04505

Longitudinal Coordinates?

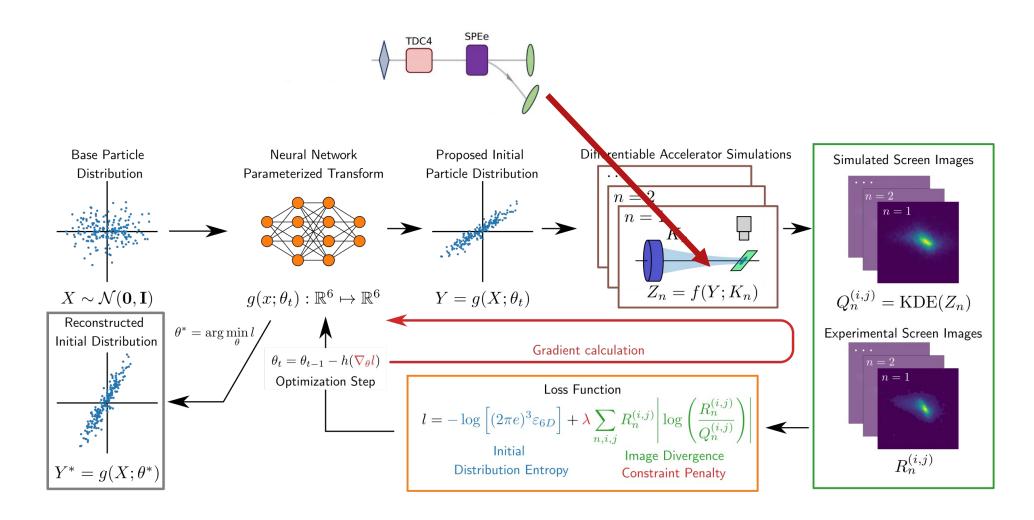
Quadrupole:

$$H = \frac{p_x^2 + p_y^2}{2(1 + p_z)} + \frac{k_1(p_z)}{2}(x^2 - y^2)$$

- Weak dependence on p_z via chromatic effects
- No dependence on z

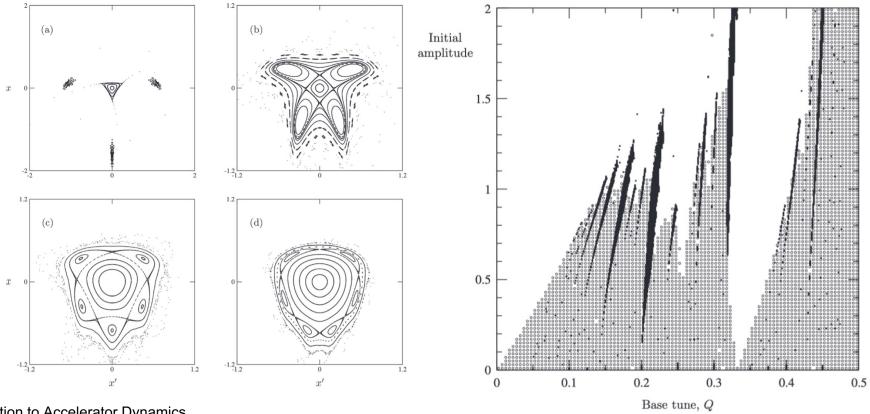


6D Phase Space Reconstruction



Limitations

- Reverse-mode AD is memory intensive
- Costly tracking routines → costly derivative calculations
- Some quantities are inherently non-differentiable:



Peggs, Satogata, Introduction to Accelerator Dynamics

Summary

- Implemented fully differentiable Bmad routines in Python
 - Drift, Quad, Crab Cavity, RF Cavity, Bend
- Library agnostic: PyTorch, Numpy, Numba, CuPy, ...
- Very flexible.
 - Derivatives of any output w.r.t. any input using auto-diff.
 - Full integration with ML modules from libraries such as neural nets
 - GPU compatible using Numba, CuPy
- Enables:
 - High-dimensional optimization.
 - Model calibration: alignment errors
 - Phase space reconstruction with limited diagnostics
- Open Source! "Bmad-X" <u>github.com/bmad-sim/Bmad-X</u>

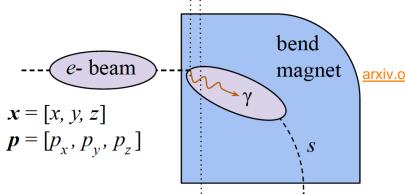
Future work

More elements

en.wikipedia.org/wiki/Sextupole_magnet

en.wikipedia.org/wiki/Superconducting radio frequency

- Collective effects
 - -CSR
 - -Spacecharge



arxiv.org/abs/2203.07542

- More applications
 - Model calibration in experiment
 - Online optimization
 - Non-linear optics
 - -Circular accelerators

Acknowledgements

The authors would like to thank **William Lou** for developing the differentiable bend and **David Sagan** for providing help with Bmad.

This work was supported by the U.S. National Science Foundation under Award PHY-1549132, the Center for Bright Beams.