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• We need fast and accurate gradient information 
for high-dimensional gradient-based optimization.

Motivation
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https://lcls.slac.stanford.edu/• Many parameters
• Nonlinear beam response
• Limited beam diagnostics
• Must meet beam quality objectives

Challenges: 
• Design
• Control
• Model calibration

Optimization

https://lcls.slac.stanford.edu/


• Numerical differentiation / finite differences
– Numerical errors
– Unstable in many situations
– Computationally expensive
– Scales badly with dimensions

Usual way to calculate gradients
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https://en.wikipedia.org/wiki/Finite_difference

• Symbolic / analytical differentiation
– Complicated mathematical expressions
– Infeasible in complicated computer functions / routines
– Scales badly with dimensions

https://en.wikipedia.org/wiki/Finite_difference


• Computers execute primitive operations/functions

(+, -, ×, ÷, sin, cos, exp, log, …)

• Routines are composed sequences of these primitive operations

• AD uses the derivatives of these primitive operations and the chain rule to evaluate 
the derivative of a computer function w.r.t. any input

• Results in
– fast derivatives (linear in the cost of computing the value)
– numerically stable
– working precision

Automatic Differentiation (AD)
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Automatic Differentiation Example
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𝑓 𝑥, 𝑦 = 𝑥 + 𝑦,
𝑔 𝑥, 𝑓(𝑥, 𝑦) = 𝑥 ∗ 𝑓 𝑥, 𝑦 ,

𝑥 = 3,
𝑦 = 2.

Graph: Evaluate 𝜕𝑔/𝜕𝑥.	
Look for paths from 𝑔 to 𝑥

and use chain rule:
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AD in Accelerator Modeling
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• “Differential Algebraic” beam dynamics (1988, M. Berz, doi.org/10.2172/6876262 )

– Uses AD to calculate derivatives of phase-space coordinates
– Enables computation of arbitrary order Taylor maps
– Can add beamline parameters as “knobs”

• Modeling of hysteresis in accelerator magnets 
– AD enables gradient based optimization of ~ 7K mesh points

Roussel et al. PRL 2022

https://doi.org/10.2172/6876262
http://doi.org/10.1103/PhysRevLett.128.204801


But we want fully differentiable 
accelerator modeling:

• Use AD to evaluate derivatives of any output 
w.r.t. any input

• Enabling high-dimensional gradient-based 
optimization of any output

Differentiable Accelerator Modeling
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How:

• Implementation of Bmad* standard tracking routines 
in Python in a library agnostic way

• Can be used with PyTorch, Numba, etc.
• Automatic Differentiation
• JIT compilation
• GPU support
• ML Modules: NN, Optimization, …

• Current elements:
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𝜕𝑓(𝑄 !,# )

𝜕𝐾
,
𝜕𝑓(𝑄 !,# )

𝜕𝑌
, …

$%!
$&

, $%!
$'

, …

* classe.cornell.edu/bmad/

http://classe.cornell.edu/bmad/


Library Agnostic Tracking
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Application 1: High-dimensional Optimization

2/17/23

𝑘( 𝑘) 𝑘(*…

• Target: round beam with 𝜎+ = 5.00 mm

• min 𝜎, − 𝜎- ) + 𝜎. − 𝜎-
)

• Free parameters: 𝑘(, … , 𝑘(*
• Optimizer: ADAM
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Results: 10 Quad Optimization
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Derivatives of any output WRT any input, regardless dimension and order. 
Example:

Application 2: Arbitrary derivative computation
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Hessian of beam size WRT 
10 quad strengths 

Physics informed Gaussian 
process for online optimization

Quad #

Quad #

𝜕)𝜎,
𝜕𝑘!𝜕𝑘#

2 orders of magnitude faster than
numerical differentiation A. Hanuka et al., PRAB (2021)

http://doi.org/10.1103/PhysRevAccelBeams.24.072802


We want:
• Find 𝑥 offsets 𝑟;, 𝑟<, 𝑟= of 3 quads 

We have: 
• 3 x-y “ground truth” beam profiles 

downstream
• 3 different sets of 𝑘;, 𝑘<, 𝑘=

Procedure: 
• 𝑟;, 𝑟<, 𝑟= such that beam profiles are 

as close as possible to ground truth
– Loss function: KL Divergence
– Differentiable beam profiles

Application 3: Model Calibration
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Results: Model Calibration
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Model Calibration: 2D Offsets and Tilt

2/17/23 14/20

𝑟!,#
𝑟$,#
𝑟%,#
𝑟&,#

𝑟!,'
𝑟$,'
𝑟%,'
𝑟&,'



Application 4: Phase Space Reconstruction
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arXiv:2209.04505

https://arxiv.org/abs/2209.04505


Application 4: Phase Space Reconstruction
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arXiv:2209.04505

https://arxiv.org/abs/2209.04505


Application 4: Phase Space Reconstruction
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arXiv:2209.04505

https://arxiv.org/abs/2209.04505


Application 4: Phase Space Reconstruction
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arXiv:2209.04505

https://arxiv.org/abs/2209.04505


PS Reconstruction (Synthetic)
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arXiv:2209.04505

https://arxiv.org/abs/2209.04505


PS Reconstruction (Experiment at AWA)

2/17/23 20/20

arXiv:2209.04505

https://arxiv.org/abs/2209.04505


PS Reconstruction (Experiment at AWA)
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arXiv:2209.04505

https://arxiv.org/abs/2209.04505


Longitudinal Coordinates ?
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No information

Lots of information
Some information

Quadrupole:

𝐻 =
𝑝,) + 𝑝.)

2 1 + 𝑝0
+
𝑘((𝑝0)
2 𝑥) − 𝑦)

• Weak dependence on 𝑝0 via chromatic 
effects

• No dependence on 𝑧



6D Phase Space Reconstruction
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• Reverse-mode AD is memory intensive
• Costly tracking routines → costly derivative calculations
• Some quantities are inherently non-differentiable:

Limitations
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Peggs, Satogata, Introduction to Accelerator Dynamics



• Implemented fully differentiable Bmad routines in Python
– Drift, Quad, Crab Cavity, RF Cavity, Bend

• Library agnostic: PyTorch, Numpy, Numba, CuPy, …
• Very flexible. 

– Derivatives of any output w.r.t. any input using auto-diff.
– Full integration with ML modules from libraries such as neural nets
– GPU compatible using Numba, CuPy

• Enables:
– High-dimensional optimization.
– Model calibration: alignment errors
– Phase space reconstruction with limited diagnostics

• Open Source! “Bmad-X” github.com/bmad-sim/Bmad-X

Summary
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https://github.com/bmad-sim/Bmad-X


• More elements

• Collective effects
– CSR
– Spacecharge

• More applications
– Model calibration in experiment
– Online optimization
– Non-linear optics
– Circular accelerators

Future work
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en.wikipedia.org/wiki/Sextupole_magnet

en.wikipedia.org/wiki/Superconducting_radio_frequency

arxiv.org/abs/2203.07542

https://en.wikipedia.org/wiki/Sextupole_magnet
https://en.wikipedia.org/wiki/Superconducting_radio_frequency
https://arxiv.org/abs/2203.07542
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