Towards End-to-End Differentiable Modeling of Particle Accelerators

J. P. Gonzalez-Aguilera*, Y.-K. Kim
Department of Physics and Enrico Fermi Institute, University of Chicago, Chicago, IL
R. Roussel, A. Edelen, C. Mayes
SLAC National Accelerator Laboratory, Menlo Park, CA

NATIONAL ACCELERATOR LABORATORY

Motivation

- Many parameters
- Nonlinear beam response
- Limited beam diagnostics
- Must meet beam quality objectives

Challenges:

- Design
- Control
- Model calibration

- We need fast and accurate gradient information for high-dimensional gradient-based optimization.

Usual way to calculate gradients

- Numerical differentiation / finite differences
- Numerical errors
-Unstable in many situations
- Computationally expensive
-Scales badly with dimensions

https://en.wikipedia.org/wiki/Finite difference

- Symbolic / analytical differentiation

-Complicated mathematical expressions

- Infeasible in complicated computer functions / routines
-Scales badly with dimensions

Automatic Differentiation (AD)

- Computers execute primitive operations/functions

$$
(+,-, \times, \div, \sin , \cos , \exp , \log , \ldots)
$$

- Routines are composed sequences of these primitive operations
- AD uses the derivatives of these primitive operations and the chain rule to evaluate the derivative of a computer function w.r.t. any input
- Results in
-fast derivatives (linear in the cost of computing the value)
-numerically stable
-working precision

Automatic Differentiation Example

$$
\begin{gathered}
f(x, y)=x+y \\
g(x, f(x, y))=x * f(x, y) \\
x=3 \\
y=2
\end{gathered}
$$

Graph:

Evaluate $\partial g / \partial x$.
Look for paths from g to x and use chain rule:

$$
\begin{aligned}
\frac{\partial g}{\partial x} & =\frac{\partial \bar{g}}{\partial x}+\frac{\partial \bar{g}}{\partial f} * \frac{\partial \bar{f}}{\partial x} \\
& =f+x * 1 \\
& =x+y+x \\
& =2 x+y=8
\end{aligned}
$$

AD in Accelerator Modeling

- "Differential Algebraic" beam dynamics (1988, M. Berz, doi. org/10.2172/6876262)
- Uses AD to calculate derivatives of phase-space coordinates
- Enables computation of arbitrary order Taylor maps
- Can add beamline parameters as "knobs"
- Modeling of hysteresis in accelerator magnets
-AD enables gradient based optimization of \sim 7K mesh points

Differentiable Accelerator Modeling

But we want fully differentiable accelerator modeling:

- Use AD to evaluate derivatives of any output w.r.t. any input
- Enabling high-dimensional gradient-based optimization of any output

How:

- Implementation of Bmad* standard tracking routines in Python in a library agnostic way
- Can be used with PyTorch, Numba, etc.
- Automatic Differentiation
- JIT compilation
- GPU support
- ML Modules: NN, Optimization, ...
- Current elements:

Library Agnostic Tracking

- Target: round beam with $\sigma_{\mathrm{t}}=5.00 \mathrm{~mm}$
- $\min \sqrt{\left(\sigma_{x}-\sigma_{t}\right)^{2}+\left(\sigma_{y}-\sigma_{t}\right)^{2}}$
- Free parameters: $\left\{k_{1}, \ldots, k_{10}\right\}$
- Optimizer: ADAM

Target beam

Results: 10 Quad Optimization

+11111111!

Application 2: Arbitrary derivative computation

Derivatives of any output WRT any input, regardless dimension and order.
Example:
Hessian of beam size WRT
10 quad strengths

2 orders of magnitude faster than
Physics informed Gaussian process for online optimization

(a) Online machine optimization Comparison of optimizers
A. Hanuka et al., PRAB (2021)

Application 3: Model Calibration

We want:

- Find x offsets $\left\{r_{1}, r_{2}, r_{3}\right\}$ of 3 quads

We have:

- $3 x-y$ "ground truth" beam profiles downstream
- 3 different sets of $\left\{k_{1}, k_{2}, k_{3}\right\}$

2D profile downstream

Procedure:

- $\left\{r_{1}, r_{2}, r_{3}\right\}$ such that beam profiles are as close as possible to ground truth
-Loss function: KL Divergence
-Differentiable beam profiles

Results: Model Calibration

Model Calibration: 2D Offsets and Tilt

Application 4: Phase Space Reconstruction

PS Reconstruction (Synthetic)

Phase Space Projections

Parameter	Ground truth	RMS Prediction	Reconstruction	Unit
ε_{x}	2.00	2.47	2.00 ± 0.01	mm-mrad
ε_{y}	11.45	14.10	10.84 ± 0.04	mm-mrad
$\varepsilon_{4 D}$	18.51	34.83*	17.34 ± 0.08	$\mathrm{mm}^{2}-\mathrm{mrad}^{2}$

PS Reconstruction (Experiment at AWA)

Parameter	RMS Prediction	Reconstruction	Unit
$\varepsilon_{x, n}$	4.18 ± 0.71	4.23 ± 0.02	mm-mrad
$\varepsilon_{y, n}$	3.65 ± 0.36	3.42 ± 0.02	mm-mrad

Longitudinal Coordinates ?

Quadrupole:

$$
H=\frac{p_{x}^{2}+p_{y}^{2}}{2\left(1+p_{z}\right)}+\frac{k_{1}\left(p_{z}\right)}{2}\left(x^{2}-y^{2}\right)
$$

- Weak dependence on p_{z} via chromatic effects
- No dependence on z

6D Phase Space Reconstruction

Limitations

- Reverse-mode AD is memory intensive
- Costly tracking routines \rightarrow costly derivative calculations
- Some quantities are inherently non-differentiable:

[^0]

Base tune, Q

Summary

- Implemented fully differentiable Bmad routines in Python
- Drift, Quad, Crab Cavity, RF Cavity, Bend
- Library agnostic: PyTorch, Numpy, Numba, CuPy, ...
- Very flexible.
- Derivatives of any output w.r.t. any input using auto-diff.
- Full integration with ML modules from libraries such as neural nets
- GPU compatible using Numba, CuPy
- Enables:
- High-dimensional optimization.
- Model calibration: alignment errors
- Phase space reconstruction with limited diagnostics
- Open Source! "Bmad-X" github.com/bmad-sim/Bmad-X

Future work

- More elements

- Collective effects
-CSR
-Spacecharge

- More applications
- Model calibration in experiment
-Online optimization
- Non-linear optics
- Circular accelerators

Acknowledgements

The authors would like to thank William Lou for developing the differentiable bend and David Sagan for providing help with Bmad.

This work was supported by the U.S. National Science Foundation under Award PHY-1549132, the Center for Bright Beams.

[^0]: Peggs, Satogata, Introduction to Accelerator Dynamics

