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Luminosity

* In addition to energy, beam quality is a critical consideration
* In colliders, quality is measured by Luminosity

Beam collision rate = High rate ~ Beam charge = High charge
PWFA Collider: f~30kHz ) ~ PWFA Collider: Q~1.6 nC, 1010 e~
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Focusability = low emittance and energy spread
PWFA Collider:

* Emittance, €,~ 35 nm

* Energyspread, AE/E < 1%

LT =€, & AE/EL&QT

http://Ihc-closer.es/taking a_closer look at Ihc/0.luminosity/idioma/en GB
1-P. Delahaye, Proc. IPAC 2013, TUPME020




The co-moving_coordinates

This is one of the most important concepts and a source of much confusion for
those who are just starting out the study in this field. Because this fields includes
drivers of physical phenomena that are moving at near the speed of light, many
variables depend on the quantity c£ - #, rather than on ‘t’ or ‘z’ alone.
Therefore, a new coordinate system is developed to work with this explicit
dependence:
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a particle moving at the speed of light will maintain its position in € while it is
moving in the Cartesian coordinates.

Note that while you may see this coordinate transform being referred to as
“going to the speed of light frame”, there are no Lorentz transforms performed in
this operation, and as such, this is not a proper change of frame. | prefer to call
this “a change of coordinate systems to a co-moving variable”, because this
operation is simply a relabeling of variable that allows for much more intuitive
interpretation of the equations of motion and fields.

Derivatives in this new coordinate system can be obtained with the use of chain

rule:
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Total time derivative: this is meaningful when all the variables are a function of
time, which is the case when we look at a single particle. In that case,
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This means that the wave equation operator becomes
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Quasi-static approximation: a common assumption in wakefield theory, it states
that physical quantities in co-moving coordinates change very slowly in time.
Mathematically, 9 « 9
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the wave equation reduces to a 2D Poisson solution
Normalizations:
In this section, we made extensive use of the normalized parameters, where we
divided a quantity by a “natural scale”, e.g. #/mc. Normalized quantities are very
useful because they allow you to understand the relative strength of a
parameter, e.g. a laser pulse with e ~0.0 | creates only a minor perturbation
(regardless of what combination of intensity and wavelength create that value of
flo )whereas a laser with cl.~ 1o creates highly nonlinear phenomena. The
normalized parameters are used extensively in description of plasma
accelerators, so here we review them for the quantities in our studies.
We have already seen the natural scales for velocity and momentum:
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Particle number density is commonly used as part of £ & & . In the context of
plasma, we normalize this variable to the background (or initial) density:
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For the scalar and vector potential, definitions can be derived from the definition
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Electrodynamics in the co-moving_coordinates
We start from the equation for potentials in the Lorentz Gauge:
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Egn 1 and 2 are used to get the Poisson equation for wake function, % in the do-



moving coordinates
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Finally, the source terms are connected by the continuity equation:
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Because of the 2D Poisson equations, we can imagine that what happens in
each slice as independent from the other slices. Eqn 5 is the continuity equation
in that world. So if we integrate over all space in this equation (i.e. in 2D), the
second term drops out from Gauss’s law evaluated over the boundary of infinite
space, leaving the first term as a new conserved quantity, l.e.
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This is analogous to total charge in a regular problem, which is conserved. In this
problem now, it is the S/D— J= A=y that is conserved from one slice to the
next. Recall that g , the co-moving coordinate is the distance along the driver.
Since charge and current density are zero for the slice immediately ahead of the

driver, this integral is zero for every slice. ‘
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The continuity equation in the co-moving coordinate then becomes
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So now, to solve our 2D Poisson equations, we could use our electrostatic
intuition. Suppose we have the following situation
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For a relativistic electron accelerated by the wakefield, Ug Vg z ~ C2

the longitudinal force is simply £ = 4 E; . According to Eqn 8 then, the goal
of low energy spread can be expressed as creating conditions for a constant
slope for ¥ as a function of % . These conclusions are independent of the
regime (linear/nonlinear, etc) and are independent of the type of the driver, laser,

e-beam, etc.

Conservation laws:
There are several ways to reach the following equations, most simply perhaps by




expressing the equation of motion in terms of the derivatives of the potential.
The two conservation equations commonly used are the conservation of
canonical momentum:
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If the gradients of the problem are zero in any direction, the canonical
momentum is conserved. This is often very useful for laser-driven wakefield,
where under the assumption of a wide beam, ;=0 , momentum of the particle
can be directly connected to the value of the vector potential.

Second conservation law is the conservation of the Hamiltonian of the particles,
which is normalized units is written as
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Beam Loading

Loading particles into the wakefield absorbs energy from the wake. The
absorbed energy is manifest in the reduction of the electric field available for
accelerating the electrons. This effect is called beam loading. We have three
objectives in beam loading:

1. Load as much charge as possible to increase the accelerated beam
brightness

2. Minimize the energy spread of the accelerated beam. Since we are intending
to inject substantial amount of charge into the wakefield, these charges are
going to have a finite size both longitudinally and transversely. Therefore we
want these electrons to be loaded in a way that the accelerating field felt by
the entire beam is the same. Doing so will ensure a small final energy spread
for the beam.

3. Maximize efficiency: the requirement of high luminosity also requires high
energy extraction efficiency from the plasma by the beam

We will treat the two cases of linear and nonlinear beam loading separately.

We start from the discussion of the linear theory. The impact of loading a trailing
particle beam in the plasma wakefield in linear theory can be calculated using
the superposition principle as was shown by Katsouleas et, al in 1987; i.e. the
wakefield due to the driver and trailing beam is separately calculated and the
total wakefield is the sum of the fields of the individual beams.



Using the equations of linear fluid theory, a differential equation can be derived
for the wake function in 1D
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The wake function behind a driver in the 1D linear regime has a sinusoidal form.
For laser, the solution is the same except the charge density is replaced with
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It turns out that the appropriate shape for obtaining a flat field is a ramped beam.
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Some limitations:

+ The amount of charge is proportional to the cross sectional area of the beam.
Because the fields of the wake are sinusoidal, the accelerating beam has to be
narrow for emittance preservation. This reduces the charge and energy
absorption efficiency

- Efficiency is proportional to the beam-loaded field as it is represented by the
amplitude of the field ahead of the wake and after the wake. Therefore the
higher the accelerated field, the lower the efficiency and also the lower the

charge.
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To non-linear territory. We will next discuss beam loading and efficiency in the
the 3D nonlinear wakes.



Nonlinear wakefield, blowout regime
The other limit of interest is a highly nonlinear wakefield. In this case, the wake

function, ¥, cannot be derived using Green’s function. Instead, we specify the
source term and solve for it using the 2D Poisson equation in the co-moving
coordinate, i.e. equations 4,6, and 7
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The sheath radius, which can be considered as the transverse trajectory of the
innermost electron can be derived using the transverse equation of motion,
where all variables are written in terms of the wake potential, ¥. In the
ultrarelativistic limit, where the sheath radius is very large, the result almost
describes the equation of a circle:
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First we discuss the physical picture of wake

flattening this is accomplished. o

-0.1
Consider a trailing beam placed inside a wakefield -0.2
with initial maximum bubble radius of R, . To avoid 03

1

nonlinear focusing fields, we require that this beam fit
inside the bubble.
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In presence of the trailing bunch, the trajectory is
modified to correspond to the black curve in the
region of the beam, which is determined by the
requirement of constant field.
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The sheath after trailing beam feel only the ion column, but because energy was
absorbed, the trajectory in that segment corresponds to a bubble with smaller
maximum radius:

Analytical solutions:
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The condition we seek is to have a current profile such that
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The shape of the bubble is described by parabola:
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This expression can be written only in terms of Et instead of rt by solving N>
in terms of Et
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Maximum total charge
We can calculate the maximum total charge that corresponds to loading the

fields to Et by assuming that the charge extends all the way tot the back of the
bubble, where the sheath reaches the § axis.
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Beam loading_efficiency of nonlinear beam loading
Let us start by assuming that beam loading terminated at some 3¢,
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By solving for this constant (ﬁL), we obtain the trajectory of the innermost
electron behind the bunch, which allows us to determine the energy remaining in
the wake. This constant can be found by using the continuity of the field at £
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Energetics of the bubble in blowout regime
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Therefore, 1~ serves as a measure of energy density in the bubble.
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for the bubble before beamloading, X o represents the energy given to the
wakefield by the driver per unit time. Behind the trailing bunch, Ts drops to

= H
PN :'nﬁ( Rb P
which is the energy left in the wakefield. Therefore, the efficiency of beam
loading, being the efficiency with which the trailing beam extracts energy is

given by
S ) @

This equation in principle holds for any bunch shape. For a flattened field, we
can use equation 23 to find the efficiency of beam loading:
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Simulation results
Here, we look at the simulation results using the parameters described in
Tzoufras 2009:
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For these latter cases the wakefield is not as flat. The reason for this is that
kpRb is not large enough for Eq. 13 to be completely accurate. This
illustrates the size of errors that may result if kpRb is not large enough. If the
charge of the bunch is increased/ decreased slightly for blue/green cases,
the wakes can then be made to be more flat. For very large blowout radii the
differences between theory and simulation are negligible.
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The size of the blowout behind the beam loading is dropped to around 1/2.
So the efficiency is
U °
“\b: \—- (%.') = 1375 /0
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Note that the similar Rb, and therefore efficiency for cases (b-d) confirms the
theoretical prediction that, in contrast to linear regime, the efficiency is
independent of the accelerating gradient.



Dechirping

Over the last decade since Tzoufras proposed the ideal beam loading with a
trapezoidal-shaped beam, the creation of such a beamload has remained an
unsolved research problem. Another solution has emerged based on the fact
that the beam loading of a flat-top or a Gaussian beam load results in a linear
accelerating field. The electrons accelerated thus have a spatial “linear chirp”
at the end of their acceleration length.

So rather than creating a situation for a flat electric field inside the bubble,
several simulation and experimental groups have investigated the idea of
dechirping, l.e. removing the linear chirp after the beam goes through its
acceleration length. Below | will describe two such ideas commonly
discussed in the community

1. Sending the resulting beam through low density plasma (see e.g. Wu, et
al., PRL, 204804, 2019)

The initially chirped beam is sent through a low density plasma and if the

parameters of the plasma are chosen properly, the self fields generated in

the plasma produce the opposite chirp resulting in a beam with almost no

energy spread. Simulations suggest a 10x reduction in energy spread down

to 0.1% is possible.

(a) Plasma dechirper (PD)
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2. Proper overloading of the wake by an escort beam (see e.g. Manahan, et
al. Nature Communications 8, 15705, 2017)

The idea in this paper is to use a Gaussian and accelerate it until it has
reached the desire energy. At that point, a second bunch can be injected to



co-propagate with the initial beam, with its position and charge set such that
C<0 in the position of the original beam. The opposite slope that is generated
then will remove the energy spread from the initial beam.
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The figure above shows how the slope of the accelerating field changes for
different charges in the escort beam (all beams have Gaussian profiles). The
idea is to transition from a case where the wakefield is ‘under loaded’ to a
case where it is ‘overloaded’, l.e. where the slope of the field flips



Particle injection and trapping
One of the biggest challenges in the field is how to put particles inside the
high-gradient accelerating field.

We start from the constant of motion obtained from the co-moving
coordinate in regular SI (unnormalized) units:

¥me* - Pz C <9 (QS‘A-ZC-') = Coastact
This results was obtained with the co-moving coordinate defined as
g = C+” &

To investigate the dynamics of particles in a wakefield that is traveling at the
phase velocity Vg it is more useful to define

S = V¢+. -—Z - ®
This is particularly useful in the case of a laser driven wakefield, since the
phase velocity of wake is usually relatively small (typically,¥g ~1© )

Since the co-moving coordinate is keeping up with the wake, the quasi-static
approximation is applied once again, and we obtain a constant of motion
similar to the previous case, except that ¢ —\Vg:

et _ PZ V¢ -~ i(¢ —AZV¢)= Consha it ...@

This is the Hamiltonian for the system. This can be obtained by the canonical
transformation of standard E&M Hamiltonian using a generating function

Fo=Pox - Vp {(Pa-eha)dt
§o( an € K in normrodlized u,u.i-\—s/ Ein 2 beconnes
X - PZV¢ —_ LP: CQAS“'; }lo ..‘®

T iniktal Hawillonian
o] fhe particle

We can use this relationship to study the possible trajectories in the phase
space for the wake (Esirkepov, PRL 2008)

Since T3= \-r?_f‘.k ’%L}

ho = \/H- Pty P — FU5) - V¢Pz-




Each unique (and not crossing!) particle trajectory is defined in phase space
by a particular he.
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The red curve represents the positive solutions and the blue curves represent

the negative solutions for Eqn 7. Note the following features:

- Trajectories that include fz,s =g ~\0  will consist of closed orbits in
phase space. Note that particles with these hamiltonians do not “travel” in
the wake. Mathematically, this is because the expression under the square
root in equation 7 is negative for a range of ¥, and so there is no physical
solution for particles in that range with a particular hamiltonian. The
physical interpretation is that these particles are trapped in the wake, and
they move forward along the red curve and go backwards along the blue
curve in the co-moving coordinate.

+ Other trajectories that not include E,s simply move forward (the red
curves) or backwards (blue curves). The physical interpretation for these
particles is that they either have too high a momentum or too low a
momentum and simply move along the wake (forwards or backwards)

« The curve separating the trapped trajectories and the traveling trajectories
is called the separatrix, and represents the last “traveling particle” that isn’t
trapped. This particle continually loses and gains energy but is just below
the threshold of trapping.

+ Note that the energy gain and loss is directly related to the electric field
(the black dashed line in phase space image). Therefore, injection of prior
electrons and beam loading, which modifies the electric field will distort the
orbit for the electrons that haven’t been trapped yet.

What happens for a more nonlinear situation?

Now with the increased value of ¢, . Q=95
higher and higher momentum values
can be reached for the trapped
electrons as the larger field creates a
larger accelerating field.
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Trapping Condition
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Trapping_Mechanisms

There are two general classes of solutions to the problem of injecting a
trailing beam on a trapped orbit. The first class is called “external injection”,
where a trailing beam is prepared and sent together with the driver into the
plasma. Once the plasma wake forms, the trailing beam finds itself on the
trapped orbit and accelerates forward:
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The physical mterpretatlon is that for ¥ <Y¢ , the electron may not be able
to get trapped if placed at the wrong phase of the wake. In that case, it will

be placed on a traveling “blue trajectory”

The second solution is to get background plasma electrons to transition from
their regular passing orbits in phase space to the trapped orbits. By the way
from the previous figure, you can see that if the plasma is warm enough,
some electrons with v wvg will get trapped. In general, there are three

strategies to facilitate this transition: 23
1. Initialize particles on trapped orbit



2. Sudden change in Hamiltonian

3. Drive wake to wave breaking or “self-injection” amplitude
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The physical interpretation is that as the electric field amplitude increases, an

electron initiated inside the wake with lower and lower energy can gain

enough energy from the wakefield to reach the phase velocity of the wake.
From the trapping inequality,
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This is the condition for ionization injection, where an electron is ionized
inside a wakefield at correct phase leading to its trapping. This phenomenon
was first observed in electron beam experiments by Oz, et al. PRL, 2006 and
by A. Pak and C. McGuffy, PRL 2010 (two back to back articles). In these
experiments an inner electron shell is ionized either at the peak of the laser
pulse, or at the focused point of an oscnlatlng dr|ve electron beam
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Experimentally, the most recent effort in laser wakefield to produce this
density down ramp profile has involved creating a density shock
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Rapid elongation of the wakefield can also naturally occur in an LWFA as a
mismatched laser pulse focuses inside the plasma (see e.g. Kostyukov PRL
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In general, any phenomenon that interferes with the ordinary trajectory of
electrons forming the wake can lead to injection. The most commonly

observed injection method in experiments is still the natural evolution of the
high-amplitude plasma wake which leads to injection.
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Appendix 1, a discussion on “(25
It is useful to divide this discussion to the case of a beam driver and laser
driver. This is because beam drivers are highly relativistic:

E: YMCL
‘?o( e ) wmcl=z 0.5l Mev

\ GeV ~ 2000
\o e\ Nio/ 00

In contrast, a laser driver is modestly relativistic. We can get an estimate for
the group velocity of a laser using our earlier study of linear plasma waves:

Y%

A ('-133 5

‘ﬁr o |Hm lager (woz'-sz*\o‘su;) X ,7.:\*|0'80':3
(QP=5.63X10'3) y (3~ 33 o m /&on/:m( e?ﬁe_c-‘s “‘l [U.?/L\

laser a.va(('(uée feud £ increase Y(e)t , ol e 2p ks reduce v
Fof o more ‘ano% discassion, cee Esarey, Review «L wodern
plopsics, 81, 1224 (20e9) , bt H#e opshet s Hot e plasman
wakefied  Joving  on gl plase yeloody to He graup velacity
o Heber, will hwe a Yoo (10), hich means Hat

i+  can be ootun \oa e 4 smodest eneigs NO(COOMQU)

X~ 200 .
Y: /o = 2o
whet*  ahaut B7 B*-V- L o Broats 0,922

’X‘L
ﬁ,;., \ sd\‘sgmé Yo a \reroa_ a&oé a.‘o?rox‘\m-(-(on.
In u)lw.‘l’ ﬁ”oob& we will (ool o metion o—fl PJ(-‘-:‘L(eé in wake
assummind  that wrale need meves ol g =g



APV“"A"% 7—:®T€Qem,.kcal eqn Couw\ec,\-b\a Y 1 A A D-
hete -

Y L[I_ +A% | —o _. D PL=A
Yz * (49 . ”““”‘“1,

’rL‘_ a.ssuw-?-h‘o./\ uscé +o &.{\'VQ ‘H'UIS %UA}CQ'\ Wa. > V¢ ~ C/
\{¢>>‘ . One cn decive o more exact e;,c?mss\'o.,\ ﬁor a Wale
with ang X¢ bat even Re Ha cove uf, Yp ~ 19, Ei" (o

s  accaate 4o O(Y-z) ~ \Z . Usin& a ‘wde  laser Pque
wiu\ o GCuussian Pwe{ ‘e allows us do  solve €qn (0 ian D y
_&(E X VI’- —So - For e laser,

d¢gr 2/
—(5-5)/ >
A< a, cos(Kog) e -®

waD

re. 2¥_.
a¢* 7

ﬁ?uwes beloes chow e wale ﬁwu."(‘m ¢ J,ms{lj Fu{-u.(ba#ow\
(n-\) %eV\QRJLJRA La, -Hu.s lasec. “not* s Calula!’d u.siaa, e

expressions (see qLascr & beawn cnu.phka, + Plaw.a" nov‘es)‘-
2 Iy
e B .7%@2’“’ 1> amalysis

n
x |+ ¢ S .
PL= A
¥ = (4 ,Ff‘:_(cw)1> D
2 (+ )
Gosol i [
add v
—_—

10
kpé

XX

—aA

——¢ o
E[10

—n-1[1

15 T T
0g=0C.5
1- S
4‘1 6 ‘8 10 1‘2 1‘4 16 1‘8 20
kpf




EN
——n-1[10X]
&AA_ V\ 10
— 5-
0

Note several features of these results

1. The nonlinear plasma wavelength increases with laser strength

2. In the region of the laser, density oscillates (zooming in, you can see that
the density oscillations are at the second harmonic).

3. For the wake function and the electric field in the region of the laser, the
oscillations are only a small perturbation on these functions.

Having obtained the wake functions, we can initialize a number of electrons
with different Hamiltonians Uw), and using Egn 7, look at their behavior in the
phase space, /% ~s- K.
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