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The co-moving coordinates 

This is one of the most important concepts and a source of much confusion for 
those who are just starting out the study in this field. Because this fields includes 
drivers of physical phenomena that are moving at near the speed of light, many 
variables depend on the quantity            , rather than on ‘t’ or ‘z’ alone. 
Therefore, a new coordinate system is developed to work with this explicit 
dependence:











Physical interpretation













a particle moving at the speed of light will maintain its position in     while it is 
moving in the Cartesian coordinates. 



Note that while you may see this coordinate transform being referred to as 
“going to the speed of light frame”, there are no Lorentz transforms performed in 
this operation, and as such, this is not a proper change of frame. I prefer to call 
this “a change of coordinate systems to a co-moving variable”, because this 
operation is simply a relabeling of variable that allows for much more intuitive 
interpretation of the equations of motion and fields.  



Derivatives in this new coordinate system can be obtained with the use of chain 
rule: 











Total time derivative: this is meaningful when all the variables are a function of 
time, which is the case when we look at a single particle. In that case,  
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This means that the wave equation operator becomes













Quasi-static approximation: a common assumption in wakefield theory, it states 
that physical quantities in co-moving coordinates change very slowly in time. 
Mathematically, 













the wave equation reduces to a 2D Poisson solution 

Normalizations: 

In this section, we made extensive use of the normalized parameters, where we 
divided a quantity by a “natural scale”, e.g.         . Normalized quantities are very 
useful because they allow you to understand the relative strength of a 
parameter, e.g. a laser pulse with                     creates only a minor perturbation 
(regardless of what combination of intensity and wavelength create that value of   
,     )whereas a laser with               creates highly nonlinear phenomena. The 
normalized parameters are used extensively in description of plasma 
accelerators, so here we review them for the quantities in our studies. 

We have already seen the natural scales for velocity and momentum: 
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Particle number density is commonly used as part of                 In the context of 
plasma, we normalize this variable to the background (or initial) density:









































For the scalar and vector potential, definitions can be derived from the definition 
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of the electric field,

























Electrodynamics in the co-moving coordinates 

We start from the equation for potentials in the Lorentz Gauge:



















































Eqn 1 and 2 are used to get the Poisson equation for wake function,     in the do-
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moving coordinates





Finally, the source terms are connected by the continuity equation:















Because of the 2D Poisson equations, we can imagine that what happens in 
each slice as independent from the other slices. Eqn 5 is the continuity equation 
in that world. So if we integrate over all space in this equation (i.e. in 2D), the 
second term drops out from Gauss’s law evaluated over the boundary of infinite 
space, leaving the first term as a new conserved quantity, I.e.



























This is analogous to total charge in a regular problem, which is conserved. In this 
problem now, it is the                         that is conserved from one slice to the 
next.  Recall that     , the co-moving coordinate is the distance along the driver. 
Since charge and current density are zero for the slice immediately ahead of the 
driver, this integral is zero for every slice. 









The continuity equation in the co-moving coordinate then becomes 
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So now, to solve our 2D Poisson equations, we could use our electrostatic 
intuition. Suppose we have the following situation





























































For a relativistic electron accelerated by the wakefield, 

the longitudinal force is simply                      . According to Eqn 8 then, the goal 
of low energy spread can be expressed as creating conditions for a constant 
slope for      as a function of      . These conclusions are independent of the 
regime (linear/nonlinear, etc) and are independent of the type of the driver, laser, 
e-beam, etc.



Conservation laws: 

There are several ways to reach the following equations, most simply perhaps by 
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expressing the equation of motion in terms of the derivatives of the potential. 
The two conservation equations commonly used are the conservation of 
canonical momentum:







If the gradients of the problem are zero in any direction, the canonical 
momentum is conserved. This is often very useful for laser-driven wakefield, 
where under the assumption of a wide beam,            , momentum of the particle 
can be directly connected to the value of the vector potential. 



Second conservation law is the conservation of the Hamiltonian of the particles, 
which is normalized units is written as 









Beam Loading

Loading particles into the wakefield absorbs energy from the wake. The 
absorbed energy is manifest in the reduction of the electric field available for 
accelerating the electrons. This effect is called beam loading. We have three 
objectives in beam loading:




Load as much charge as possible to increase the accelerated beam 1.
brightness

Minimize the energy spread of the accelerated beam. Since we are intending 2.
to inject substantial amount of charge into the wakefield, these charges are 
going to have a finite size both longitudinally and transversely. Therefore we 
want these electrons to be loaded in a way that the accelerating field felt by 
the entire beam is the same. Doing so will ensure a small final energy spread 
for the beam. 

Maximize efficiency: the requirement of high luminosity also requires high 3.
energy extraction efficiency from the plasma by the beam




We will treat the two cases of linear and nonlinear beam loading separately. 



We start from the discussion of the linear theory. The impact of loading a trailing 
particle beam in the plasma wakefield in linear theory can be calculated using 
the superposition principle as was shown by Katsouleas et, al in 1987; i.e. the 
wakefield due to the driver and trailing beam is separately calculated and the 
total wakefield is the sum of the fields of the individual beams.  
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Using the equations of linear fluid theory, a differential equation can be derived 
for the wake function in 1D



































The wake function behind a driver in the 1D linear regime has a sinusoidal form. 
For laser, the solution is the same except the charge density is replaced with 



















The superposition of an initial wake by a driver and the wake of the beam load is 
given by
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It turns out that the appropriate shape for obtaining a flat field is a ramped beam. 





























































Some limitations:


The amount of charge is proportional to the cross sectional area of the beam. •
Because the fields of the wake are sinusoidal, the accelerating beam has to be 
narrow for emittance preservation. This reduces the charge and energy 
absorption efficiency 

Efficiency is proportional to the beam-loaded field as it is represented by the •
amplitude of the field ahead of the wake and after the wake. Therefore the 
higher the accelerated field, the lower the efficiency and also the lower the 
charge. 
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This is still clearly an overestimate, because we are assuming 





In order to increase the loaded charge, we need to increase 

To non-linear territory. We will next discuss beam loading and efficiency in the 
the 3D nonlinear wakes. 
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Nonlinear wakefield, blowout regime 

The other limit of interest is a highly nonlinear wakefield. In this case, the wake 
function,    , cannot be derived using Green’s function. Instead, we specify the 
source term and solve for it using the 2D Poisson equation in the co-moving 
coordinate, i.e. equations 4,6, and 7
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The sheath radius, which can be considered as the transverse trajectory of the 
innermost electron can be derived using the transverse equation of motion, 
where all variables are written in terms of the wake potential,    . In the 
ultrarelativistic limit, where the sheath radius is very large, the result almost 
describes the equation of a circle:
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First we discuss the physical picture of wake 
flattening this is accomplished. 



Consider a trailing beam placed inside a wakefield 
with initial maximum bubble radius of      . To avoid 
nonlinear focusing fields, we require that this beam fit 
inside the bubble.



In presence of the trailing bunch, the trajectory is 
modified to correspond to the black curve in the 
region of the beam, which is determined by the 
requirement of constant field. 





The sheath after trailing beam feel only the ion column, but because energy was 
absorbed, the trajectory in that segment corresponds to a bubble with smaller 
maximum radius:



Analytical solutions: 
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The condition we seek is to have a current profile such that







The continuity of electric at     requires that











The shape of the bubble is described by parabola:

























This expression can be written only in terms of Et instead of rt by solving 

in terms of Et







This is the equation for a trapezoid.
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Maximum total charge 

We can calculate the maximum total charge that corresponds to loading the 
fields to Et by assuming that the charge extends all the way tot the back of the 
bubble, where the sheath reaches the    axis.  



































Beam loading efficiency of nonlinear beam loading 

Let us start by assuming that beam loading terminated at some 

such that 





























By solving for this constant (     ), we obtain the trajectory of the innermost 
electron behind the bunch, which allows us to determine the energy remaining in 
the wake. This constant can be found by using the continuity of the field at  
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Energetics of the bubble in blowout regime
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Therefore,      serves as a measure of energy density in the bubble. 
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for the bubble before beamloading,      represents the energy given to the 
wakefield by the driver per unit time. Behind the trailing bunch,     drops to





which is the energy left in the wakefield. Therefore, the efficiency of beam 
loading, being the efficiency with which the trailing beam extracts energy is 
given by







This equation in principle holds for any bunch shape. For a flattened field, we 
can use equation 23 to find the efficiency of beam loading: 
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Simulation results

Here, we look at the simulation results using the parameters described in 
Tzoufras 2009:
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For these latter cases the wakefield is not as flat. The reason for this is that 
kpRb is not large enough for Eq. 13 to be completely accurate. This 
illustrates the size of errors that may result if kpRb is not large enough. If the 
charge of the bunch is increased/ decreased slightly for blue/green cases, 
the wakes can then be made to be more flat. For very large blowout radii the 
differences between theory and simulation are negligible.





























The size of the blowout behind the beam loading is dropped to around 1/2. 
So the efficiency is 













Note that the similar Rb, and therefore efficiency for cases (b-d) confirms the 
theoretical prediction that, in contrast to linear regime, the efficiency is 
independent of the accelerating gradient. 
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Dechirping 

Over the last decade since Tzoufras proposed the ideal beam loading with a 
trapezoidal-shaped beam, the creation of such a beamload has remained an 
unsolved research problem. Another solution has emerged based on the fact 
that the beam loading of a flat-top or a Gaussian beam load results in a linear  
accelerating field. The electrons accelerated thus have a spatial “linear chirp” 
at the end of their acceleration length. 



So rather than creating a situation for a flat electric field inside the bubble, 
several simulation and experimental groups have investigated the idea of 
dechirping, I.e. removing the linear chirp after the beam goes through its 
acceleration length. Below I will describe two such ideas commonly 
discussed in the community




Sending the resulting beam through low density plasma (see e.g. Wu, et 1.
al., PRL, 204804, 2019) 


The initially chirped beam is sent through a low density plasma and if the 
parameters of the plasma are chosen properly, the self fields generated in 
the plasma produce the opposite chirp resulting in a beam with almost no 
energy spread. Simulations suggest a 10x reduction in energy spread down 
to 0.1% is possible. 



Schematic of the idea with the self 
fields in the plasma counteracting 
the initial energy spread. 







Experiments snd stimulants show 
that the energy spread can be 
significantly reduced.  









2. Proper overloading of the wake by an escort beam (see e.g. Manahan, et 
al. Nature Communications 8, 15705, 2017)

The idea in this paper is to use a Gaussian and accelerate it until it has 
reached the desire energy. At that point, a second bunch can be injected to 



co-propagate with the initial beam, with its position and charge set such that 
C<0 in the position of the original beam. The opposite slope that is generated 
then will remove the energy spread from the initial beam. 

 



































The figure above shows how the slope of the accelerating field changes for 
different charges in the escort beam (all beams have Gaussian profiles). The 
idea is to transition from a case where the wakefield is ‘under loaded’ to a 
case where it is ‘overloaded’, I.e. where the slope of the field flips
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Particle injection and trapping 

One of the biggest challenges in the field is how to put particles inside the 
high-gradient accelerating field. 



We start from the constant of motion obtained from the co-moving 
coordinate in regular SI (unnormalized) units:





This results was obtained with the co-moving coordinate defined as 





To investigate the dynamics of particles in a wakefield that is traveling at the 
phase velocity      , it is more useful to define





This is particularly useful in the case of a laser driven wakefield, since the 
phase velocity of wake is usually relatively small (typically,            )



Since the co-moving coordinate is keeping up with the wake, the quasi-static 
approximation is applied once again, and we obtain a constant of motion 
similar to the previous case, except that





This is the Hamiltonian for the system. This can be obtained by the canonical 
transformation of standard E&M Hamiltonian using a generating function

















We can use this relationship to study the possible trajectories in the phase 
space for the wake (Esirkepov, PRL 2008)
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Each unique (and not crossing!) particle trajectory is defined in phase space 
by a particular 
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The red curve represents the positive solutions and the blue curves represent 
the negative solutions for Eqn 7. Note the following features:


Trajectories that include                              , will consist of closed orbits in •
phase space. Note that particles with these hamiltonians do not “travel” in 
the wake. Mathematically, this is because the expression under the square 
root in equation 7 is negative for a range of     , and so there is no physical 
solution for particles in that range with a particular hamiltonian. The 
physical interpretation is that these particles are trapped in the wake, and 
they move forward along the red curve and go backwards along the blue 
curve in the co-moving coordinate. 

Other trajectories that not include        simply move forward (the red •
curves) or backwards (blue curves). The physical interpretation for these 
particles is that they either have too high a momentum or too low a 
momentum and simply move along the wake (forwards or backwards)

The curve separating the trapped trajectories and the traveling trajectories •
is called the separatrix, and represents the last “traveling particle” that isn’t 
trapped. This particle continually loses and gains energy but is just below 
the threshold of trapping. 

Note that the energy gain and loss is directly related to the electric field •
(the black dashed line in phase space image). Therefore, injection of prior 
electrons and beam loading, which modifies the electric field will distort the 
orbit for the electrons that haven’t been trapped yet. 




What happens for a more nonlinear situation?

Now with the increased value of     , 
higher and higher momentum values 
can be reached for the trapped 
electrons as the larger field creates a 
larger accelerating field. 
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Trapping Condition
















































































From the phase space discussion we know a particle is
on a trapped orbit if Pz from Egn 7 has a physical
solution inside the wake for V up
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Trapping Mechanisms

There are two general classes of solutions to the problem of injecting a 
trailing beam on a trapped orbit. The first class is called “external injection”, 
where a trailing beam is prepared and sent together with the driver into the 
plasma. Once the plasma wake forms, the trailing beam finds itself on the 
trapped orbit and accelerates forward:
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The physical interpretation is that for               , the electron may not be able 
to get trapped if placed at the wrong phase of the wake. In that case, it will 
be placed on a traveling “blue trajectory”



The second solution is to get background plasma electrons to transition from 
their regular passing orbits in phase space to the trapped orbits. By the way 
from the previous figure, you can see that if the plasma is warm enough, 
some electrons with              will get trapped. In general, there are three 
strategies to facilitate this transition:
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Ti Pz 1 R K T Y Y o

Pi Bi Ti ri 1
2

Etf
Ti ti l g

k

ri Pei In Ipa
14 5,170 193ft

p t.gg
Y no trapping

ricro

vivo

Effy



Sudden change in Hamiltonian
2.
Drive wake to wave breaking or “self-injection” amplitude
3.
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The physical interpretation is that as the electric field amplitude increases, an 
electron initiated inside the wake with lower and lower energy can gain 
enough energy from the wakefield to reach the phase velocity of the wake. 
From the trapping inequality, 
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This is the condition for ionization injection, where an electron is ionized 
inside a wakefield at correct phase leading to its trapping. This phenomenon 
was first observed in electron beam experiments by Oz, et al. PRL, 2006 and 
by A. Pak and C. McGuffy, PRL 2010 (two back to back articles). In these 
experiments an inner electron shell is ionized either at the peak of the laser 
pulse, or at the focused point of an oscillating drive electron beam. 
































































If the transverse momentum is small 8 Leroy
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Experimentally, the most recent effort in laser wakefield to produce this 
density down ramp profile has involved creating a density shock
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Rapid elongation of the wakefield can also naturally occur in an LWFA as a 
mismatched laser pulse focuses inside the plasma (see e.g. Kostyukov PRL 
2009):



































In general, any phenomenon that interferes with the ordinary trajectory of 
electrons forming the wake can lead to injection. The most commonly 
observed injection method in experiments is still the natural evolution of the 
high-amplitude plasma wake which leads to injection.
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In ID we already saw wavebreaking is the limit where fluid
velocity Vo approaches to

thThe wave breaks like an ocean up
wave some particles roll

her into the trapped orbits

In 3D we can have trajectory crossing w o trapping
ut much like the previous section
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theback of the wake structure
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Simulations have been used to get an empirical predictor for
conditions to achieve trapping by Benedetti PoP2013
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Appendix 1, a discussion on 

It is useful to divide this discussion to the case of a beam driver and laser 
driver. This is because beam drivers are highly relativistic:















In contrast, a laser driver is modestly relativistic. We can get an estimate for 
the group velocity of a laser using our earlier study of linear plasma waves:


























































E Ymca
for é me2 0.511 MeV

10GeV n 20,000

By Y l

rg fig p

ey for a Man laser Wo 188 10 s Hz no 1 101863

Cup 5.63 1013 182332 The nonlinear effects of high
laser amplitude tend to increase ry while 3D effects reduce it
For a more thorough discussion see Esarey Review of modern
physics 81 1229 2009 but theupshot is that the plasma
wakefield having an equal phase velocity to thegroup velocity

of thelaser will have a Tno lo which means that
it can be outrun by e of modest energy ofoomer
8 200

what about p 132 1 Iz p Ets
É
0.9994

Bal is satisfied to a very good approximation

In what follows we will look at motion of particles in wake

assuming that wake now moves w Vp 2g










































































Appendix Differential ofa connecting 4 to A
in ID

TEEIf 1211 IIF o canonical

The assumption used to derive this equation was Up a C

8g 1 One can derive a more exact expression for a wake
with any Vp but even for the case of Tp 10 Egn to

s accurate to 018
2 1 Using a wide laser pulse

with a Gaussian profile allows us to solve egn to in ID
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Figures below show the wake function 4 density perturbation

n 1 generated by this laser n 1 is calculated using the

expressions see Lasser beam coupling to plasma notes

I lt E 0124 0 ID analysis

ringgit
do o I

n

06 0.5


















Note several features of these results

The nonlinear plasma wavelength increases with laser strength
1.
In the region of the laser, density oscillates (zooming in, you can see that 2.
the density oscillations are at the second harmonic). 

For the wake function and the electric field in the region of the laser, the 3.
oscillations are only a small perturbation on these functions. 




Having obtained the wake functions, we can initialize a number of electrons 
with different Hamiltonians        , and using Eqn 7, look at their behavior in the 
phase space,
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