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® Snowmass Implementation Task Force: Objectives and Results
e Carbon Impact of Facility Construction
e Carbon Impact of Facility Operation

e Mitigation Strategies



Snowmass ITF

The Snowmass Implementation Task Force (ITF) was tasked with
analyzing future collider facilities for:
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e Cost (LBNL) (CERN) (BNL, Chair)
e Time of development

e Size

e Power consumption

The size and power consumption parameters can be used to
determine environmental impact.
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Snowmass ITF Report
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ITF Report: hitps://arxiv.org/abs/2208.06030
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Tunneling and Construction

Drill and Blast N Tunnel Boring Machine

~0.4 Tonnes CO,/m @ 5.5 m diameter ~1.8 MWh/m -> 0.09-0.9t CO,/m @ 5.5 m diameter
(includes loading and hauling) (additional 0.15 CO,/m for loading and hauling)
Environmental impact of drill and blast tunnelling: life cycle assessment. Performance Analysis of Tunnel Boring Machines for Rock Excavation.

http://dx.doi.org/10.1016/|.jclepro.2014.08.083 https://doi.org/10.3390/app11062794
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Tunneling and Construction

Excavation emissions per meter
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Tunneling and Construction

«10% Higgs Factories
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Calculation based on length of main
tunnel and assumes 0.4t CO,/m
(independent of site or technique).
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Assumes a 5 meter diameter and
considers emissions from concrete as
well.

Tons of 002
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Emissions may be lower for projects
at CERN (nuclear energy) or C3 2
(surface-level tunnel).
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Power Consumption

Power consumption estimates provided
by proponents of the collider.

For our analysis of carbon emissions, we
assume:

e 370g CO,/kWh (US average)

e 1E7 seconds/year operation

Proposal Name

Power
Consumption

Size Complexity

Radiation
Mitigation

FCC-ee (0.24 TeV)

CEPC (0.24 TeV)

ILC (0.25 TeV)

CLIC (0.38 TeV)

CCC (0.25 TeV)

CERGC (0.24 TeV)

ReLiC (0.24 TeV)

ERLC (0.24 TeV)

XCC (0.125TeV) | 90 |

MC (0.13 TeV)

TLC (3 TeV)

CLIC (3 TeV)

CCC (3 TeV)

ReLiC (3 TeV)

MC (3 TeV)

LWFA (3 TeV)

PWFA (3 TeV)

SWFA (3 TeV)
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91 km

30 km
1.4 km

MC (14 TeV)

LWFA (15 TeV)

PWFA (15 TeV)

SWFA (15 TeV)

FCC-hh (100 TeV)

SPPC (125 TeV)
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ITF Report: https://arxiv.org/abs/2208.06030
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Emissions from Power Consumption

. X1‘05 Higgs Factor'ies ' . «10° 3 TeV CM Machines . «10° High Energy Machines
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Site-independent estimate of emissions due to power consumption.
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Emissions from Power Consumption

Construction footprint includes:

e Emissions due to tunneling.

e Emissions from concrete.

e Assumes that the lab uses 10% of
full operating power during
construction phase.

In all cases, emissions from power
consumption during operation dominate
over construction emissions.
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Carbon Intensity Varies Around the World

Carbon intensity of electricity, 2000 to 2021

Carbon intensity measures the amount of greenhouse gases emitted per unit of electricity produced. Here it is
measured in grams of CO, per kilowatt-hour of electricity.

600 gCO,
China
500 gCO,
Japan
400 gCO,
United States
300 gCO,
Not all countries emit carbon equally!
200 gCO,
100 gCO,
e~ France
bW /———‘—/\/\%\’—' Switzerland
0 gCOZ r T T T 1
2000 2005 2010 2015 2021
Source: Ember Climate (from various sources including the European Environment Agency and EIA) OurWorldInData.org/energy « CC BY
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Carbon Intensity Varies Around the World - '.f,“

Patrick Janot, Alain Blondel.
The carbon footprint of proposed e+e— Higgs factories
https://arxiv.org/abs/2208.10466
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Green Accelerator Technology
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Green Accelerator Technology

20 GeV e recovery beam ring

5 GeV e* damping ring (ILC-like) e turnaround 20 GeV

3 km circ. ring = 10 us rev. time

5 GeV e linac

e*target 5 GeV e* linac — S

3 GeV e linac e* turnaround 5 GeV
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20 GeV boost linac
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Accelerated recovery Accelerated recovery Accelerated recovery

Energy recovery will be critical for the positron arm of beam-driven PWFA

colliders if the acceleration efficiency remains at the percent-level.




Building Green Power

e The price of new renewable energy
sources is dropping rapidly.
o Inthe U.S., hope to achieve $1000/kW
solar installed in 2030.

® A new collider could provide a benefit
to the community by funding new
power sources.

e Take C3 as an example:
o 150 MW operating power for Higgs.
o $150M investment to create solar
energy.
o  Only 2% of project cost!

Capacity-weighted average construction costs, by technology type (2013-2019)
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*Levelized cost of energy (LCOE) PV progress and targets are calculated based on average U.S. climate
and without the Investment Tax Credit or state/local incentives.
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Conclusions

e \We consider the effect of future colliders on the environment.
o Collider power consumption is the biggest single factor.

e Site choice is important.
o France and Switzerland both use Renewable Energy sources
and this is increasingly the case in the US as well.

e Regardless of site choice, it is possible to mitigate the effect of
carbon emissions by either investing in offsets or building
renewable power sources.
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Carbon Tax

Prices n mplemented carbon prcing ntities selected

Alberta TIER
Argentina carbon tax

Beijing pilot ETS
California CaT

Canada federal OBPS
Canada federal fuel charge
Chile carbon tax

China national

Denmark carbon
EUETS

Estonia carbon tax
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France carbon tax
Fuj
Germany

n pilot

Guangdong pilot ETS
Hubel pilot ETS
Iceland

rbon tax

Ireland carbon tax

Japan carbon tax
Kazakhstan ETS
a carbon tax

Liechtenstein carbon tax

Luxembourg carbon tax
Massachusetts ETS

ax

Mexico carbon
Netherlands carbon tax
New Brunswick ETS

New Brunswick carbon
Zealand £
Newfoundland and Labrador PSS
Newfoundland and Labrador carbon tax
Northwest Territories carbon tax

Norway carbon tax
Nova Scotia CaT
Ontario EPS

x

Polan
tugal carbon tax

rbon

Prince Edward Island carbon tax

Saitama ETS
Saskatchewan OBPS
Shanghai pilot
Shenzhen pilot

singapore carbon tax
Slovenia carbon tax
th Africa

rbon tax
Spain carbon tax
eden carbon tax
Switzerland ETS
Switzerland carbon tax
amaulipas carbon tax
Tianjin pilot £TS

okyo CaT

UK Carbon Price Support
UKETS

Ukraine carbon tax
Uruguay CO2 tax

® PriceRate1 @ PriceRate2 Us$ /tCOZe
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