Environmental Impact of Future Colliders

Perspective from the Snowmass ITF

Spencer Gessner, SLAC AAC'22

November 7, 2022

Stanford |

- Snowmass Implementation Task Force: Objectives and Results
- Carbon Impact of Facility Construction
- Carbon Impact of Facility Operation
- Mitigation Strategies

Snowmass ITF

The Snowmass Implementation Task Force (ITF) was tasked with analyzing future collider facilities for:

- Cost
- Time of development
- Size
- Power consumption

The size and power consumption parameters can be used to determine environmental impact.

Marlene Turner (LBNL)

Spencer Gessner (SLAC)

Sarah Cousineau (ORNL)

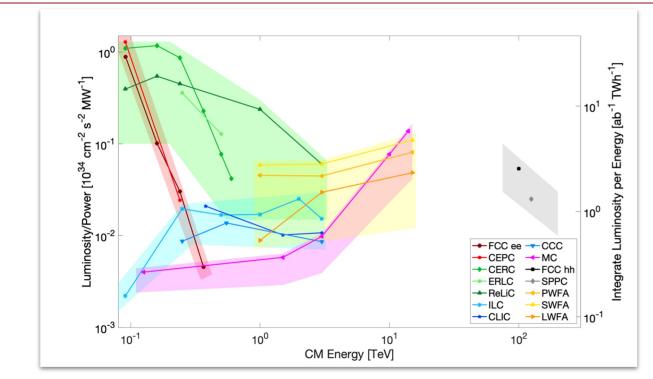
Steve Gourlay (LBNL)

Philippe Lebrun (CERN)

Thomas Roser (BNL, Chair)

Tor Raubenheimer (SLAC)

Katsunobu Oide (KEK) Jim Strait (FNAL)


Vladimir Shiltsev (FNAL)

Reinhard Brinkmann John Seeman (DESY) (SLAC)

Snowmass ITF Report

ITF Report: https://arxiv.org/abs/2208.06030

Tunneling

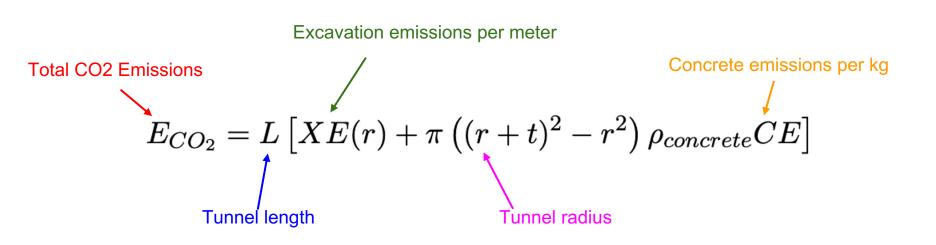
til.

1.1

Tunneling and Construction

Drill and Blast

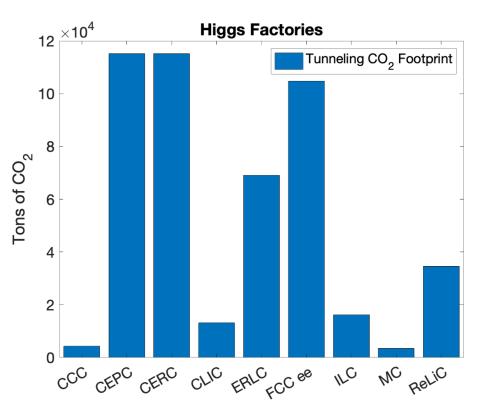
~0.4 Tonnes CO₂/m @ 5.5 m diameter (includes loading and hauling)


Environmental impact of drill and blast tunnelling: life cycle assessment. http://dx.doi.org/10.1016/j.jclepro.2014.08.083

Tunnel Boring Machine

~1.8 MWh/m -> 0.09-0.9t CO₂/m @ 5.5 m diameter (additional 0.15 CO₂/m for loading and hauling)

Performance Analysis of Tunnel Boring Machines for Rock Excavation. <u>https://doi.org/10.3390/app11062794</u>



Tunneling and Construction

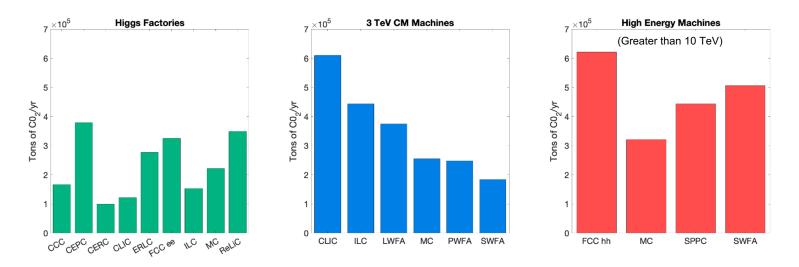
Calculation based on length of main tunnel and assumes $0.4t CO_2/m$ (independent of site or technique).

Assumes a 5 meter diameter and considers emissions from concrete as well.

Emissions may be lower for projects at CERN (nuclear energy) or C³ (surface-level tunnel).

Power Consumption

Power Consumption

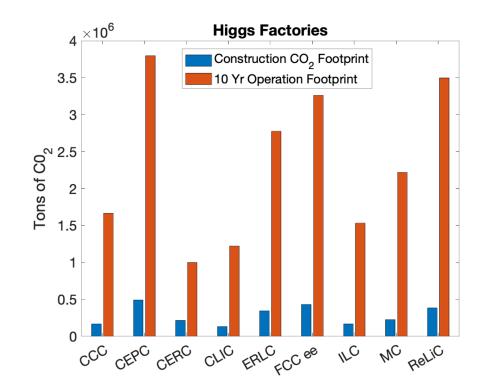

Power consumption estimates provided by proponents of the collider.

For our analysis of carbon emissions, we assume:

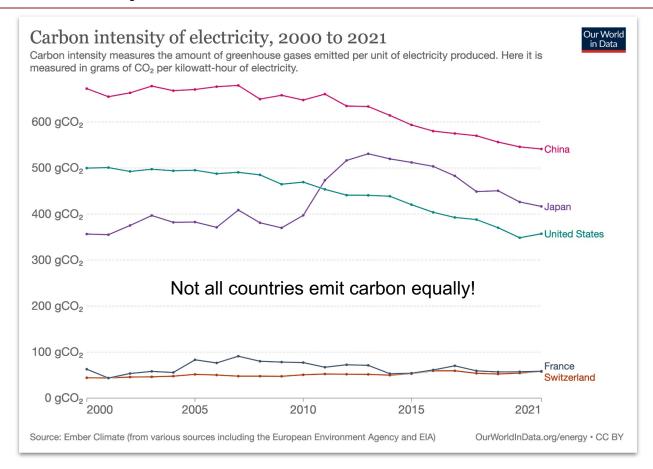
- 370g CO₂/kWh (US average)
- 1E7 seconds/year operation

Proposal Name	Power	Size	Complexity	Radiation
	Consumption			Mitigation
FCC-ee (0.24 TeV)	290	91 km	Ι	I
CEPC (0.24 TeV)	340	$100 \mathrm{~km}$	Ι	Ι
ILC (0.25 TeV)	140	$20.5 \mathrm{~km}$	Ι	I
CLIC (0.38 TeV)	110	11.4 km	II	I
CCC (0.25 TeV)	150	$3.7 \mathrm{km}$	I	Ι
CERC (0.24 TeV)	90	91 km	II	I
ReLiC (0.24 TeV)	315	$20 \mathrm{km}$	II	I
ERLC (0.24 TeV)	250	30 km	II	Ι
XCC (0.125 TeV)	90	1.4 km	II	I
MC (0.13 TeV)	200	$0.3 \mathrm{km}$	Ι	II
ILC (3 TeV)	~ 400	$59 \mathrm{km}$	II	II
CLIC (3 TeV)	~ 550	$50.2~\mathrm{km}$	III	II
CCC (3 TeV)	~ 700	$26.8 \mathrm{~km}$	II	II
ReLiC (3 TeV)	~ 780	$360 \mathrm{km}$	III	I
MC (3 TeV)	~ 230	10-20 km	II	III
LWFA (3 TeV)	~ 340	$1.3~\mathrm{km}$	II	Ι
		(linac)		
PWFA (3 TeV)	~ 230	$14 \mathrm{km}$	II	II
SWFA (3 TeV)	$\sim \! 170$	$18 \mathrm{km}$	II	II
MC (14 TeV)	~ 300	27 km	III	III
LWFA (15 TeV)	$\sim \! 1030$	$6.6~\mathrm{km}$	III	Ι
PWFA (15 TeV)	~ 620	14 km	III	II
SWFA (15 TeV)	$\sim \!\! 450$	90 km	III	II
FCC-hh (100 TeV)	~ 560	91 km	II	III
SPPC (125 TeV)	~ 400	100 km	II	III

Emissions from Power Consumption


Site-independent estimate of emissions due to power consumption.

Emissions from Power Consumption


Construction footprint includes:

- Emissions due to tunneling.
- Emissions from concrete.
- Assumes that the lab uses 10% of full operating power during construction phase.

In all cases, emissions from power consumption during operation dominate over construction emissions.

Carbon Intensity Varies Around the World

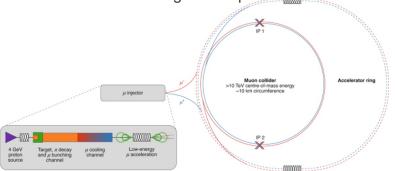
Carbon Intensity Varies Around the World

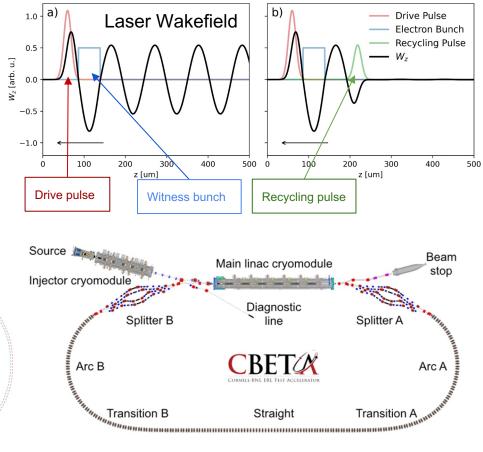
Patrick Janot, Alain Blondel. The carbon footprint of proposed e+e- Higgs factories https://arxiv.org/abs/2208.10466

Mitigation

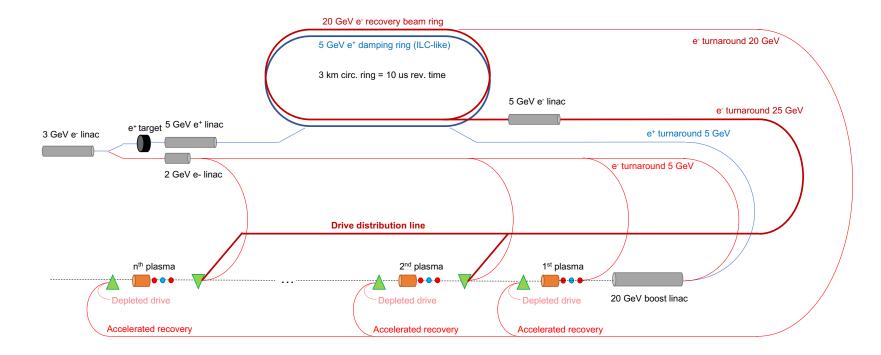
Green Accelerator Technology

Energy recovery:

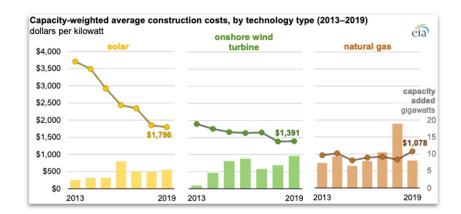

- Superconducting energy-recovery linac ERL already demonstrated.
- DOE funded project to develop this concept for plasma accelerators. (M. Turner ECA)

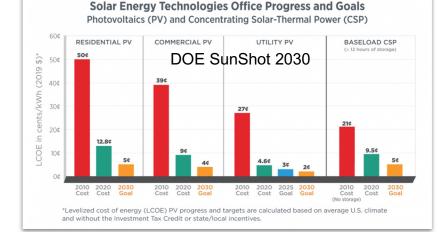

Emittance reduction:

 Novel damping ring design or particle sources would reduce power requirements of linear colliders.


Muons colliders:

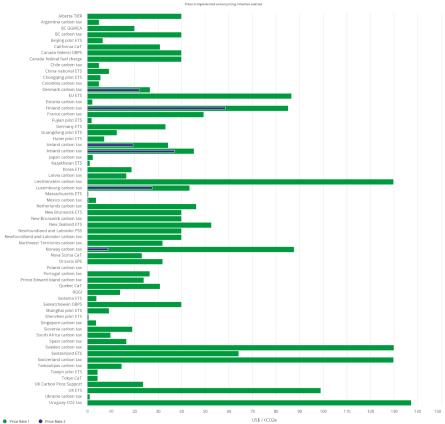
Favorable scaling of lumi/power


Green Accelerator Technology



Energy recovery will be critical for the positron arm of beam-driven PWFA colliders if the acceleration efficiency remains at the percent-level.

Building Green Power


- The price of new renewable energy sources is dropping rapidly.
 - In the U.S., hope to achieve \$1000/kW solar installed in 2030.
- A new collider could provide a benefit to the community by funding new power sources.
- Take C³ as an example:
 - 150 MW operating power for Higgs.
 - \$150M investment to create solar energy.
 - Only 2% of project cost!

- We consider the effect of future colliders on the environment.
 Collider power consumption is the biggest single factor.
- Site choice is important.
 - France and Switzerland both use Renewable Energy sources and this is increasingly the case in the US as well.
- Regardless of site choice, it is possible to mitigate the effect of carbon emissions by either investing in offsets or building renewable power sources.

Carbon Tax

Note: Nominal prices on .April.01 2022

These are not researchy compared between ranknon pixing initiations because of differences in the matter of sectors onewel and abaction methods again, specific sectors and difference compared bits methods. Due to the symmetry against against again again, ag