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Introduction

I Numerical Cherenkov radiation can occur when the numerical phase velocity is reduced
below c, allowing for resonance with the particle velocity

I In macro-particle models the resonant response of numerical Cherenkov radiation is
associated with an instability

I In a system equivalent to using canonical coordinates, we wish to confirm that even when
numerical Cherenkov radiation leads to exact resonance, there is no resulting instability

I By analyzing a sufficiently simple toy model which captures the behavior of numerical Cherenkov
radiation, we can produce analytically the same solution as the computer would solve

I So long as no exponential growth finds its way into the solution, we can be confident our model
doesn’t suffer from a numerical Cherenkov instability



The Toy Model

We consider a two-dimensional system with a single macro-particle having fixed velocity u = uẑ
and an arbitrary shape function S.

� = q S(r − u t)

The Lagrangian is then
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−mc2
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and only has A and ' as variable fields.



The Spacial Grid

The domain is limited to an Lx by Lz rectangle with Nx by Nz grid points

I Scalar fields restricted to the grid are represented as matrices

I The integral is replaced by a tensor M representing the quadrature rule

I The vector calculus operations are replaced with finite difference tensors

The discrete Lagrangian is then

L =
−mc2
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Discrete Equations of Motion

Varying the action yields the equations of motion
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and the light cone gauge Anz = 'n can be used to limit the three equations of motion to two
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Simplify Equations of Motion with Discrete Fourier Analysis

The discrete Fourier decomposition

fn =
1

NxNz
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can be used to replace central finite difference operations as

F[{rfn}]k = i ���kfk for some real ���k

I For example, the second-order central difference

Dx fn =
fnx+1;nz − fnx−1;nz

2�x
→ �kx =

sin(�x kx)

�x

I Note that in the limit �x → 0, we must have that �kx → kx



Discretized Equations of Motion in New Basis

The two matrix equations
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can then be expressed mode-by-mode as

�Akx + ic�kx
_Akz − c2�kx �kz Akz + c2�2

kz
Akx = 0

�Akz + 2ic�kz
_Akz + ic�kx

_Akx − c2�kx �kz Akx − c2�2
kz

Akz = Qke−ikz ut

where Qk simply collects constants and is dependent on the macro-particle’s shape function.



The Linear Algebra Problem

By introducing frequencies as !kx = c�kx and !kz = c�kz , the previous equations can be written as
the first-order system
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which can be simplified to
d
dt

yk = Mkyk + Vke−ikz ut



Discretized Time - Difference Equation

After diagonalizing we obtain
d
dt

y0

k = Dky0

k + V0

ke−ikz ut

Solving this numerically leads to the corresponding difference equation

y0(n+1)
k = Dky0(n)

k + VkV0

ke−i�kn

where �k = kzu�t and Dk and Vk are diagonal matrices whose constructions depend on the
time-stepping method employed. This can be solved exactly.

I Note that �k is real-valued for all k



The Eigenvalue Problem

Since the eigenvectors, ei , of Dk span the space, we can define the eigenvalue problem as

Dkei = e−i
(i)
k ei

and expand our vectors in terms of the eigenvectors
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to solve for each vector component of the vector difference equation independently as
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The Solution

The solution to the driven difference equation has two possible forms of solution depending on if
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The constant Ak is set by the initial conditions. The other three components are of identical form.

I This is qualitatively identical to the continuous solution to a driven oscillator



Accessibility of Solutions

Which of the two forms of the solution are obtainable is dependent on the numerical frequencies
produced by the chosen time-stepping method.
I For example, with the implicit midpoint rule we have
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which results in a system with purely real values for 
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I Thus the resonant case of the result is achievable with this time-stepping method

I If we were to instead use the explicit RK-4 method
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we produce complex values for 
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k , which can never meet the resonance condition.

I If 
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Conclusions and Future Work

I The resonant case of the solution corresponds to the potentials’ numerical phase velocity in
vacuum being reduced to the particle velocity
I We note that any time-stepping method that introduces complex frequencies cannot produce this

resonance as �k must be real
I The numerical phase velocity depends on the choice of finite difference; preliminary results show a

clever choice of ���k can lessen the effect of numerical Cherenkov radiation over certain ranges of k

I The resonant case exhibits growth that is only linear in time and picks up a small phase shift
proportional to the size of the time step

I If the toy model were improved to be fully self-consistent, energy considerations make it clear
that the system could only drop out of resonance as the particle loses energy
I This feature is to be shown when the toy model is expanded to self-consistent plasmas
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