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In the ultra-relativistic region we have a new type of accuracy condition
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Abstract

An exact momentum update useful for particle codes was previously given. The

expressions involved were unwieldy. By treating the momentum as a represen-

tation of SU(2)⇥SU(2) instead of SO(3,1), a more compact expression for the

exact momentum update is obtained. An expansion in powers of the timestep

can be formulated such that invariance properties are exactly preserved, and

push rates comparable to the standard Boris pusher are obtained.
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1. Introduction

Electromagnetic particle-in-cell codes utilize a variety of algorithms to up-

date the particle momentum [1, 2, 3, 4, 5, 6, 7, 8]. Ref. [9] points out that

the accuracy of the standard Boris pusher [1, 10] is reduced for large amplitude

waves, and gives an accuracy condition based on demanding that the angle of

rotation of the momentum vector be small during a step. Reference [5] analyzes

a generalization of the Boris scheme, and shows that even if the Boris rotation

is replaced with an exact rotation, there is still an accuracy condition 1
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1
Taking the cubed root of both sides of the inequality to obtain a condition reminiscent of

the one from [9] is not generally valid.
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Because of the commutators, no scheme that factorizes electric and magnetic contributions to 
the Lorentz force can overcome this limit (e.g., Boris scheme).

(F = FE + FB)

(new momentum) = (add impulse) (rotate about B) (add impulse) (old momentum)

Namely, something like this will never work well:
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By making use of the spinor representation of a four-vector, an exact time translation in an 
arbitrary uniform field can be compactly written

2. Special Unitary Time Translation

This section derives the unitary form of the exact time translation operator of

the four-momentum in a constant, uniform, electromagnetic field, with arbitrary

polarization. Ordinarily one has a four-velocity u
µ, satisfying the equation of

motion mdu
µ
/ds = eF

µ
⌫ u

⌫ , where s is the proper time. For constant, uniform

fields, the exact solution is furnished by taking the matrix exponential. The

expression for the matrix exponential is tractable, but somewhat onerous, even

after employing a rotation to simplify it [5]. The particle pusher obtained this

way is exactly Lorentz invariant. Preservation of the Euclidean norm of the

velocity in a magnetic field is merely a special case.

In order to obtain an equivalent pusher that can be expressed more easily,

we employ the relationship between four-vectors and second rank spinors [11].

Readers unfamiliar with this relationship may find the appendix useful. Let ⇣

be the 2⇥ 2 matrix representing the spinor that represents momentum. Then

u
µ =

1

2
tr(�µ

⇣) (3)

Here �
µ are the Pauli matrices if µ = [1, 2, 3] and the identity if µ = 0. The

inverse operation gives the matrix

⇣ =

0

@ u
0 + u

3
u
1 � iu

2

u
1 + iu

2
u
0 � u

3

1

A (4)

The steps used in [11] to derive the boost and rotation operators are a useful

guide in deriving the operator of time translation. Let the time translation

operator be denoted ⇤(�s), where �s is any interval in proper time. The

spinor is transformed as

⇣(s+�s) = ⇤(�s)⇣(s)⇤†(�s) (5)

It is useful to define the generator � by ⇤(ds) = 1+�ds. The equation of motion

for ⇣ is then
d⇣

ds
= �⇣ + ⇣�

†
. (6)

3

spinor form of the four-momentum

time translation operator

𝜁 𝑠 + ∆𝑠 = Λ Δ𝑠 𝜁 𝑠 Λ! ∆𝑠

Minkowski-type angle
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We would like to exactly conserve certain quantities
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The expression for the matrix exponential is tractable, but some-
what onerous, even after employing a rotation to simplify it [5].
The particle pusher obtained this way is exactly Lorentz invariant.
Preservation of the Euclidean norm of the velocity in a magnetic
field is merely a special case.

In order to obtain an equivalent pusher that can be expressed
more easily, we employ the relationship between four-vectors
and second rank spinors [11]. Readers unfamiliar with this rela-
tionship may find the appendix useful. Let ⇣ be the 2 ⇥ 2 matrix
representing the spinor that represents momentum. Then

uµ = 1
2
tr(�µ⇣ ) (3)

Here �µ are the Pauli matrices if µ = [1, 2, 3] and the identity if
µ = 0. The inverse operation gives the matrix

⇣ =
✓
u0 + u3 u1 � iu2

u1 + iu2 u0 � u3

◆
(4)

The steps used in [11] to derive the boost and rotation operators
are a useful guide in deriving the operator of time translation. Let
the time translation operator be denoted ⇤(�s), where �s is any
interval in proper time. The spinor is transformed as

⇣ (s +�s) = ⇤(�s)⇣ (s)⇤†(�s) (5)

It is useful to define the generator � by ⇤(ds) = 1 + �ds. The
equation of motion for ⇣ is then
d⇣
ds

= �⇣ + ⇣�†. (6)

Using the equations of motion for u and ⇣ , along with (3), one
obtains

� = � ·⌦ (7)

where bold type is used for three-vectors, and

⌦ = 1
2

e
mc

(E + iB) (8)

The full time translation operator is again furnished by a ma-
trix exponential, exp(��s). Thanks to the anticommuting prop-
erties of the Pauli matrices this can be reduced to the practical
expression

⇤(�s) = cosh⌦�s + � · ! sinh⌦�s (9)

where

⌦ =
p
⌦ ·⌦ (10)

and

! = ⌦
⌦

(11)

Note that ⇤(�s) is an even function of ⌦ , so that the sign of the
square root is immaterial. Hereinafter, the pusher algorithm that
uses Eq. (9) is referred to as the exact-unitary pusher.

3. Invariants

The familiar invariants associated with charged particle mo-
tion take a new form in the SU(2)⌦SU(2) representation of the
momentum. It is convenient to define

 = ⌦�s, (12)

which can be thought of as a set of Minkowski-type angles. In a
pure electric field, the magnitude  =

p
 · is real, and the

hyperbolic functions have real arguments, leading to a Lorentz
boost. In a pure magnetic field,  is imaginary, and the hyperbolic
functions become equivalent to trigonometric functions of a real

number, leading to a rotation. In the case where E·B = E2�B2 = 0
(i.e., plane wave fields),  ·  = 0 and the time translation
operator reduces to ⇤ = 1 + � · .

In the SU(2)⌦SU(2) representation, Lorentz invariance corre-
sponds to the invariance of the determinant, i.e.,
d
ds

det ⇣ = 0. (13)

It is straightforward to demonstrate that the transformation
⇤(s)⇣ (0)⇤(s)† satisfies this condition exactly. If E = 0 is inserted
into the transformation, then the trace is also invariant, i.e.,
d
ds

tr⇣ = 0. (14)

This corresponds to conservation of energy in a pure magnetic
field. In the case E · B = E2 � B2 = 0,
d
ds

tr
�
1 � � · ek

�
⇣ = 0 (15)

where ek is a unit vector in the direction of E⇥B. This corresponds
to the invariance of kµuµ in a plane wave with wavevector kµ.

4. Invariant truncated expansion

It is possible to form a truncated expansion in the timestep
that exactly preserves all the invariance properties mentioned
above. This expansion is useful because it eliminates special func-
tions and square roots entirely from the formulation, which im-
proves performance on typical computer hardware. The time
translation operator, expressed as a limit, is

⇤ = lim
n!1

(1 + � · /n)n (16)

The obvious truncation, i.e., simply taking n as finite, does not
preserve all the invariants. An approximation which does pre-
serve all the invariants is

⇤(n) = (1 + � · /n)n/2 (1 � � · /n)�n/2 (17)

This has unit determinant, as can be seen by noting that

det(1 + � · /n) = det(1 � � · /n) (18)

and using the well known properties of the determinant. Since
all the matrix factors involved in the time translation have unit
determinant, invariance of the Minkowski norm is unaffected by
the truncation (17). In a pure magnetic field, the energy is also
exactly invariant, as can be verified by direct evaluation of the
trace with E = 0. Finally, in a plane wave, the exact and truncated
operators are identical due to · = 0. Therefore the invariance
of kµuµ is also preserved.

As is shown below, the second order time translation operator
⇤(2) is extremely accurate in practice. Making use of (� · )2 =
 · gives the practical expression

⇤(2) = 1 + � · + · /4
1 � · /4

(19)

An immediate optimization is to factor out the denominator from
both ⇤(2) and its Hermitian conjugate. The two denominators
taken together amount to division of the entire result by a real
number. Hereinafter, the pusher algorithm that uses Eq. (19) is
referred to as the quadratic-unitary pusher.

5. Unitary pusher algorithm

The implementation of the above expressions in a numerical
particle pusher is straightforward. One has essentially three steps:
(i) form the spinor ⇣ using (4), (ii) advance the spinor using
(5), and (iii) restore the four-velocity using (3). These steps in-
volve 2 ⇥ 2 matrix manipulations with complex numbers, which

2

Since this is exact it respects all invariants;
however truncation does not
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The particle pusher obtained this way is exactly Lorentz invariant.
Preservation of the Euclidean norm of the velocity in a magnetic
field is merely a special case.
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uses Eq. (9) is referred to as the exact-unitary pusher.

3. Invariants

The familiar invariants associated with charged particle mo-
tion take a new form in the SU(2)⌦SU(2) representation of the
momentum. It is convenient to define

 = ⌦�s, (12)

which can be thought of as a set of Minkowski-type angles. In a
pure electric field, the magnitude  =

p
 · is real, and the

hyperbolic functions have real arguments, leading to a Lorentz
boost. In a pure magnetic field,  is imaginary, and the hyperbolic
functions become equivalent to trigonometric functions of a real

number, leading to a rotation. In the case where E·B = E2�B2 = 0
(i.e., plane wave fields),  ·  = 0 and the time translation
operator reduces to ⇤ = 1 + � · .

In the SU(2)⌦SU(2) representation, Lorentz invariance corre-
sponds to the invariance of the determinant, i.e.,
d
ds

det ⇣ = 0. (13)

It is straightforward to demonstrate that the transformation
⇤(s)⇣ (0)⇤(s)† satisfies this condition exactly. If E = 0 is inserted
into the transformation, then the trace is also invariant, i.e.,
d
ds

tr⇣ = 0. (14)

This corresponds to conservation of energy in a pure magnetic
field. In the case E · B = E2 � B2 = 0,
d
ds

tr
�
1 � � · ek

�
⇣ = 0 (15)

where ek is a unit vector in the direction of E⇥B. This corresponds
to the invariance of kµuµ in a plane wave with wavevector kµ.

4. Invariant truncated expansion

It is possible to form a truncated expansion in the timestep
that exactly preserves all the invariance properties mentioned
above. This expansion is useful because it eliminates special func-
tions and square roots entirely from the formulation, which im-
proves performance on typical computer hardware. The time
translation operator, expressed as a limit, is

⇤ = lim
n!1

(1 + � · /n)n (16)

The obvious truncation, i.e., simply taking n as finite, does not
preserve all the invariants. An approximation which does pre-
serve all the invariants is

⇤(n) = (1 + � · /n)n/2 (1 � � · /n)�n/2 (17)

This has unit determinant, as can be seen by noting that

det(1 + � · /n) = det(1 � � · /n) (18)

and using the well known properties of the determinant. Since
all the matrix factors involved in the time translation have unit
determinant, invariance of the Minkowski norm is unaffected by
the truncation (17). In a pure magnetic field, the energy is also
exactly invariant, as can be verified by direct evaluation of the
trace with E = 0. Finally, in a plane wave, the exact and truncated
operators are identical due to · = 0. Therefore the invariance
of kµuµ is also preserved.

As is shown below, the second order time translation operator
⇤(2) is extremely accurate in practice. Making use of (� · )2 =
 · gives the practical expression

⇤(2) = 1 + � · + · /4
1 � · /4

(19)

An immediate optimization is to factor out the denominator from
both ⇤(2) and its Hermitian conjugate. The two denominators
taken together amount to division of the entire result by a real
number. Hereinafter, the pusher algorithm that uses Eq. (19) is
referred to as the quadratic-unitary pusher.

5. Unitary pusher algorithm

The implementation of the above expressions in a numerical
particle pusher is straightforward. One has essentially three steps:
(i) form the spinor ⇣ using (4), (ii) advance the spinor using
(5), and (iii) restore the four-velocity using (3). These steps in-
volve 2 ⇥ 2 matrix manipulations with complex numbers, which

2

This form does respect invariants to round-off

Invariance of Minkowski norm
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The expression for the matrix exponential is tractable, but some-
what onerous, even after employing a rotation to simplify it [5].
The particle pusher obtained this way is exactly Lorentz invariant.
Preservation of the Euclidean norm of the velocity in a magnetic
field is merely a special case.

In order to obtain an equivalent pusher that can be expressed
more easily, we employ the relationship between four-vectors
and second rank spinors [11]. Readers unfamiliar with this rela-
tionship may find the appendix useful. Let ⇣ be the 2 ⇥ 2 matrix
representing the spinor that represents momentum. Then

uµ = 1
2
tr(�µ⇣ ) (3)

Here �µ are the Pauli matrices if µ = [1, 2, 3] and the identity if
µ = 0. The inverse operation gives the matrix

⇣ =
✓
u0 + u3 u1 � iu2

u1 + iu2 u0 � u3

◆
(4)

The steps used in [11] to derive the boost and rotation operators
are a useful guide in deriving the operator of time translation. Let
the time translation operator be denoted ⇤(�s), where �s is any
interval in proper time. The spinor is transformed as

⇣ (s +�s) = ⇤(�s)⇣ (s)⇤†(�s) (5)

It is useful to define the generator � by ⇤(ds) = 1 + �ds. The
equation of motion for ⇣ is then
d⇣
ds

= �⇣ + ⇣�†. (6)

Using the equations of motion for u and ⇣ , along with (3), one
obtains

� = � ·⌦ (7)

where bold type is used for three-vectors, and

⌦ = 1
2

e
mc

(E + iB) (8)

The full time translation operator is again furnished by a ma-
trix exponential, exp(��s). Thanks to the anticommuting prop-
erties of the Pauli matrices this can be reduced to the practical
expression

⇤(�s) = cosh⌦�s + � · ! sinh⌦�s (9)

where

⌦ =
p
⌦ ·⌦ (10)

and

! = ⌦
⌦

(11)

Note that ⇤(�s) is an even function of ⌦ , so that the sign of the
square root is immaterial. Hereinafter, the pusher algorithm that
uses Eq. (9) is referred to as the exact-unitary pusher.

3. Invariants

The familiar invariants associated with charged particle mo-
tion take a new form in the SU(2)⌦SU(2) representation of the
momentum. It is convenient to define

 = ⌦�s, (12)

which can be thought of as a set of Minkowski-type angles. In a
pure electric field, the magnitude  =

p
 · is real, and the

hyperbolic functions have real arguments, leading to a Lorentz
boost. In a pure magnetic field,  is imaginary, and the hyperbolic
functions become equivalent to trigonometric functions of a real

number, leading to a rotation. In the case where E·B = E2�B2 = 0
(i.e., plane wave fields),  ·  = 0 and the time translation
operator reduces to ⇤ = 1 + � · .

In the SU(2)⌦SU(2) representation, Lorentz invariance corre-
sponds to the invariance of the determinant, i.e.,
d
ds

det ⇣ = 0. (13)

It is straightforward to demonstrate that the transformation
⇤(s)⇣ (0)⇤(s)† satisfies this condition exactly. If E = 0 is inserted
into the transformation, then the trace is also invariant, i.e.,
d
ds

tr⇣ = 0. (14)

This corresponds to conservation of energy in a pure magnetic
field. In the case E · B = E2 � B2 = 0,
d
ds

tr
�
1 � � · ek

�
⇣ = 0 (15)

where ek is a unit vector in the direction of E⇥B. This corresponds
to the invariance of kµuµ in a plane wave with wavevector kµ.

4. Invariant truncated expansion

It is possible to form a truncated expansion in the timestep
that exactly preserves all the invariance properties mentioned
above. This expansion is useful because it eliminates special func-
tions and square roots entirely from the formulation, which im-
proves performance on typical computer hardware. The time
translation operator, expressed as a limit, is

⇤ = lim
n!1

(1 + � · /n)n (16)

The obvious truncation, i.e., simply taking n as finite, does not
preserve all the invariants. An approximation which does pre-
serve all the invariants is

⇤(n) = (1 + � · /n)n/2 (1 � � · /n)�n/2 (17)

This has unit determinant, as can be seen by noting that

det(1 + � · /n) = det(1 � � · /n) (18)

and using the well known properties of the determinant. Since
all the matrix factors involved in the time translation have unit
determinant, invariance of the Minkowski norm is unaffected by
the truncation (17). In a pure magnetic field, the energy is also
exactly invariant, as can be verified by direct evaluation of the
trace with E = 0. Finally, in a plane wave, the exact and truncated
operators are identical due to · = 0. Therefore the invariance
of kµuµ is also preserved.

As is shown below, the second order time translation operator
⇤(2) is extremely accurate in practice. Making use of (� · )2 =
 · gives the practical expression

⇤(2) = 1 + � · + · /4
1 � · /4

(19)

An immediate optimization is to factor out the denominator from
both ⇤(2) and its Hermitian conjugate. The two denominators
taken together amount to division of the entire result by a real
number. Hereinafter, the pusher algorithm that uses Eq. (19) is
referred to as the quadratic-unitary pusher.

5. Unitary pusher algorithm

The implementation of the above expressions in a numerical
particle pusher is straightforward. One has essentially three steps:
(i) form the spinor ⇣ using (4), (ii) advance the spinor using
(5), and (iii) restore the four-velocity using (3). These steps in-
volve 2 ⇥ 2 matrix manipulations with complex numbers, which

2
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square root is immaterial. Hereinafter, the pusher algorithm that
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tion take a new form in the SU(2)⌦SU(2) representation of the
momentum. It is convenient to define

 = ⌦�s, (12)

which can be thought of as a set of Minkowski-type angles. In a
pure electric field, the magnitude  =

p
 · is real, and the

hyperbolic functions have real arguments, leading to a Lorentz
boost. In a pure magnetic field,  is imaginary, and the hyperbolic
functions become equivalent to trigonometric functions of a real

number, leading to a rotation. In the case where E·B = E2�B2 = 0
(i.e., plane wave fields),  ·  = 0 and the time translation
operator reduces to ⇤ = 1 + � · .
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d
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det ⇣ = 0. (13)

It is straightforward to demonstrate that the transformation
⇤(s)⇣ (0)⇤(s)† satisfies this condition exactly. If E = 0 is inserted
into the transformation, then the trace is also invariant, i.e.,
d
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This corresponds to conservation of energy in a pure magnetic
field. In the case E · B = E2 � B2 = 0,
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where ek is a unit vector in the direction of E⇥B. This corresponds
to the invariance of kµuµ in a plane wave with wavevector kµ.

4. Invariant truncated expansion

It is possible to form a truncated expansion in the timestep
that exactly preserves all the invariance properties mentioned
above. This expansion is useful because it eliminates special func-
tions and square roots entirely from the formulation, which im-
proves performance on typical computer hardware. The time
translation operator, expressed as a limit, is

⇤ = lim
n!1

(1 + � · /n)n (16)

The obvious truncation, i.e., simply taking n as finite, does not
preserve all the invariants. An approximation which does pre-
serve all the invariants is

⇤(n) = (1 + � · /n)n/2 (1 � � · /n)�n/2 (17)

This has unit determinant, as can be seen by noting that

det(1 + � · /n) = det(1 � � · /n) (18)

and using the well known properties of the determinant. Since
all the matrix factors involved in the time translation have unit
determinant, invariance of the Minkowski norm is unaffected by
the truncation (17). In a pure magnetic field, the energy is also
exactly invariant, as can be verified by direct evaluation of the
trace with E = 0. Finally, in a plane wave, the exact and truncated
operators are identical due to · = 0. Therefore the invariance
of kµuµ is also preserved.

As is shown below, the second order time translation operator
⇤(2) is extremely accurate in practice. Making use of (� · )2 =
 · gives the practical expression

⇤(2) = 1 + � · + · /4
1 � · /4

(19)

An immediate optimization is to factor out the denominator from
both ⇤(2) and its Hermitian conjugate. The two denominators
taken together amount to division of the entire result by a real
number. Hereinafter, the pusher algorithm that uses Eq. (19) is
referred to as the quadratic-unitary pusher.

5. Unitary pusher algorithm

The implementation of the above expressions in a numerical
particle pusher is straightforward. One has essentially three steps:
(i) form the spinor ⇣ using (4), (ii) advance the spinor using
(5), and (iii) restore the four-velocity using (3). These steps in-
volve 2 ⇥ 2 matrix manipulations with complex numbers, which

2
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The expression for the matrix exponential is tractable, but some-
what onerous, even after employing a rotation to simplify it [5].
The particle pusher obtained this way is exactly Lorentz invariant.
Preservation of the Euclidean norm of the velocity in a magnetic
field is merely a special case.

In order to obtain an equivalent pusher that can be expressed
more easily, we employ the relationship between four-vectors
and second rank spinors [11]. Readers unfamiliar with this rela-
tionship may find the appendix useful. Let ⇣ be the 2 ⇥ 2 matrix
representing the spinor that represents momentum. Then

uµ = 1
2
tr(�µ⇣ ) (3)

Here �µ are the Pauli matrices if µ = [1, 2, 3] and the identity if
µ = 0. The inverse operation gives the matrix

⇣ =
✓
u0 + u3 u1 � iu2

u1 + iu2 u0 � u3

◆
(4)

The steps used in [11] to derive the boost and rotation operators
are a useful guide in deriving the operator of time translation. Let
the time translation operator be denoted ⇤(�s), where �s is any
interval in proper time. The spinor is transformed as

⇣ (s +�s) = ⇤(�s)⇣ (s)⇤†(�s) (5)

It is useful to define the generator � by ⇤(ds) = 1 + �ds. The
equation of motion for ⇣ is then
d⇣
ds

= �⇣ + ⇣�†. (6)

Using the equations of motion for u and ⇣ , along with (3), one
obtains

� = � ·⌦ (7)

where bold type is used for three-vectors, and

⌦ = 1
2

e
mc

(E + iB) (8)

The full time translation operator is again furnished by a ma-
trix exponential, exp(��s). Thanks to the anticommuting prop-
erties of the Pauli matrices this can be reduced to the practical
expression

⇤(�s) = cosh⌦�s + � · ! sinh⌦�s (9)

where

⌦ =
p
⌦ ·⌦ (10)

and

! = ⌦
⌦

(11)

Note that ⇤(�s) is an even function of ⌦ , so that the sign of the
square root is immaterial. Hereinafter, the pusher algorithm that
uses Eq. (9) is referred to as the exact-unitary pusher.

3. Invariants

The familiar invariants associated with charged particle mo-
tion take a new form in the SU(2)⌦SU(2) representation of the
momentum. It is convenient to define

 = ⌦�s, (12)

which can be thought of as a set of Minkowski-type angles. In a
pure electric field, the magnitude  =

p
 · is real, and the

hyperbolic functions have real arguments, leading to a Lorentz
boost. In a pure magnetic field,  is imaginary, and the hyperbolic
functions become equivalent to trigonometric functions of a real

number, leading to a rotation. In the case where E·B = E2�B2 = 0
(i.e., plane wave fields),  ·  = 0 and the time translation
operator reduces to ⇤ = 1 + � · .

In the SU(2)⌦SU(2) representation, Lorentz invariance corre-
sponds to the invariance of the determinant, i.e.,
d
ds

det ⇣ = 0. (13)

It is straightforward to demonstrate that the transformation
⇤(s)⇣ (0)⇤(s)† satisfies this condition exactly. If E = 0 is inserted
into the transformation, then the trace is also invariant, i.e.,
d
ds

tr⇣ = 0. (14)

This corresponds to conservation of energy in a pure magnetic
field. In the case E · B = E2 � B2 = 0,
d
ds

tr
�
1 � � · ek

�
⇣ = 0 (15)

where ek is a unit vector in the direction of E⇥B. This corresponds
to the invariance of kµuµ in a plane wave with wavevector kµ.

4. Invariant truncated expansion

It is possible to form a truncated expansion in the timestep
that exactly preserves all the invariance properties mentioned
above. This expansion is useful because it eliminates special func-
tions and square roots entirely from the formulation, which im-
proves performance on typical computer hardware. The time
translation operator, expressed as a limit, is

⇤ = lim
n!1

(1 + � · /n)n (16)

The obvious truncation, i.e., simply taking n as finite, does not
preserve all the invariants. An approximation which does pre-
serve all the invariants is

⇤(n) = (1 + � · /n)n/2 (1 � � · /n)�n/2 (17)

This has unit determinant, as can be seen by noting that

det(1 + � · /n) = det(1 � � · /n) (18)

and using the well known properties of the determinant. Since
all the matrix factors involved in the time translation have unit
determinant, invariance of the Minkowski norm is unaffected by
the truncation (17). In a pure magnetic field, the energy is also
exactly invariant, as can be verified by direct evaluation of the
trace with E = 0. Finally, in a plane wave, the exact and truncated
operators are identical due to · = 0. Therefore the invariance
of kµuµ is also preserved.

As is shown below, the second order time translation operator
⇤(2) is extremely accurate in practice. Making use of (� · )2 =
 · gives the practical expression

⇤(2) = 1 + � · + · /4
1 � · /4

(19)

An immediate optimization is to factor out the denominator from
both ⇤(2) and its Hermitian conjugate. The two denominators
taken together amount to division of the entire result by a real
number. Hereinafter, the pusher algorithm that uses Eq. (19) is
referred to as the quadratic-unitary pusher.

5. Unitary pusher algorithm

The implementation of the above expressions in a numerical
particle pusher is straightforward. One has essentially three steps:
(i) form the spinor ⇣ using (4), (ii) advance the spinor using
(5), and (iii) restore the four-velocity using (3). These steps in-
volve 2 ⇥ 2 matrix manipulations with complex numbers, which

2

Invariance of energy in static B-field

Invariance of γ – pz in a plane wave
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The expression for the matrix exponential is tractable, but some-
what onerous, even after employing a rotation to simplify it [5].
The particle pusher obtained this way is exactly Lorentz invariant.
Preservation of the Euclidean norm of the velocity in a magnetic
field is merely a special case.

In order to obtain an equivalent pusher that can be expressed
more easily, we employ the relationship between four-vectors
and second rank spinors [11]. Readers unfamiliar with this rela-
tionship may find the appendix useful. Let ⇣ be the 2 ⇥ 2 matrix
representing the spinor that represents momentum. Then

uµ = 1
2
tr(�µ⇣ ) (3)

Here �µ are the Pauli matrices if µ = [1, 2, 3] and the identity if
µ = 0. The inverse operation gives the matrix

⇣ =
✓
u0 + u3 u1 � iu2

u1 + iu2 u0 � u3

◆
(4)

The steps used in [11] to derive the boost and rotation operators
are a useful guide in deriving the operator of time translation. Let
the time translation operator be denoted ⇤(�s), where �s is any
interval in proper time. The spinor is transformed as

⇣ (s +�s) = ⇤(�s)⇣ (s)⇤†(�s) (5)

It is useful to define the generator � by ⇤(ds) = 1 + �ds. The
equation of motion for ⇣ is then
d⇣
ds

= �⇣ + ⇣�†. (6)

Using the equations of motion for u and ⇣ , along with (3), one
obtains

� = � ·⌦ (7)

where bold type is used for three-vectors, and

⌦ = 1
2

e
mc

(E + iB) (8)

The full time translation operator is again furnished by a ma-
trix exponential, exp(��s). Thanks to the anticommuting prop-
erties of the Pauli matrices this can be reduced to the practical
expression

⇤(�s) = cosh⌦�s + � · ! sinh⌦�s (9)

where

⌦ =
p
⌦ ·⌦ (10)

and

! = ⌦
⌦

(11)

Note that ⇤(�s) is an even function of ⌦ , so that the sign of the
square root is immaterial. Hereinafter, the pusher algorithm that
uses Eq. (9) is referred to as the exact-unitary pusher.

3. Invariants

The familiar invariants associated with charged particle mo-
tion take a new form in the SU(2)⌦SU(2) representation of the
momentum. It is convenient to define

 = ⌦�s, (12)

which can be thought of as a set of Minkowski-type angles. In a
pure electric field, the magnitude  =

p
 · is real, and the

hyperbolic functions have real arguments, leading to a Lorentz
boost. In a pure magnetic field,  is imaginary, and the hyperbolic
functions become equivalent to trigonometric functions of a real

number, leading to a rotation. In the case where E·B = E2�B2 = 0
(i.e., plane wave fields),  ·  = 0 and the time translation
operator reduces to ⇤ = 1 + � · .

In the SU(2)⌦SU(2) representation, Lorentz invariance corre-
sponds to the invariance of the determinant, i.e.,
d
ds

det ⇣ = 0. (13)

It is straightforward to demonstrate that the transformation
⇤(s)⇣ (0)⇤(s)† satisfies this condition exactly. If E = 0 is inserted
into the transformation, then the trace is also invariant, i.e.,
d
ds

tr⇣ = 0. (14)

This corresponds to conservation of energy in a pure magnetic
field. In the case E · B = E2 � B2 = 0,
d
ds

tr
�
1 � � · ek

�
⇣ = 0 (15)

where ek is a unit vector in the direction of E⇥B. This corresponds
to the invariance of kµuµ in a plane wave with wavevector kµ.

4. Invariant truncated expansion

It is possible to form a truncated expansion in the timestep
that exactly preserves all the invariance properties mentioned
above. This expansion is useful because it eliminates special func-
tions and square roots entirely from the formulation, which im-
proves performance on typical computer hardware. The time
translation operator, expressed as a limit, is

⇤ = lim
n!1

(1 + � · /n)n (16)

The obvious truncation, i.e., simply taking n as finite, does not
preserve all the invariants. An approximation which does pre-
serve all the invariants is

⇤(n) = (1 + � · /n)n/2 (1 � � · /n)�n/2 (17)

This has unit determinant, as can be seen by noting that

det(1 + � · /n) = det(1 � � · /n) (18)

and using the well known properties of the determinant. Since
all the matrix factors involved in the time translation have unit
determinant, invariance of the Minkowski norm is unaffected by
the truncation (17). In a pure magnetic field, the energy is also
exactly invariant, as can be verified by direct evaluation of the
trace with E = 0. Finally, in a plane wave, the exact and truncated
operators are identical due to · = 0. Therefore the invariance
of kµuµ is also preserved.

As is shown below, the second order time translation operator
⇤(2) is extremely accurate in practice. Making use of (� · )2 =
 · gives the practical expression

⇤(2) = 1 + � · + · /4
1 � · /4

(19)

An immediate optimization is to factor out the denominator from
both ⇤(2) and its Hermitian conjugate. The two denominators
taken together amount to division of the entire result by a real
number. Hereinafter, the pusher algorithm that uses Eq. (19) is
referred to as the quadratic-unitary pusher.

5. Unitary pusher algorithm

The implementation of the above expressions in a numerical
particle pusher is straightforward. One has essentially three steps:
(i) form the spinor ⇣ using (4), (ii) advance the spinor using
(5), and (iii) restore the four-velocity using (3). These steps in-
volve 2 ⇥ 2 matrix manipulations with complex numbers, which

2

Quadratic in time step, no special functions or roots, 
invariance properties accurate to round-off.
N.b. overall advance is quartic.

These are merely 2x2 matrix operations, easy to program

Interesting note: in a plane wave Ψ∙Ψ = 0, and the lowest order truncation is 
actually exact!

Lowest order - exact in a plane wave
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𝜆 𝜃 𝑠 − 𝜃 0 + [𝜃 𝑠 − 𝜃 0 ]𝜆! = 𝜁 𝑠 − 𝜁 0

𝐹[𝑥 𝑠 − 𝑥 0 ] = 𝑢 𝑠 − 𝑢 0

Spinor representation of spacetime coordinate:

Exact solution:

Compare with vector form (cf. Schwinger 1951 eq. 3.3):

There are some pathologies in the exact expressions, best to use expansion

(Li et al. use a Taylor expansion of this)
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2. Special Unitary Time Translation

This section derives the unitary form of the exact time translation operator of

the four-momentum in a constant, uniform, electromagnetic field, with arbitrary

polarization. Ordinarily one has a four-velocity u
µ, satisfying the equation of

motion mdu
µ
/ds = eF

µ
⌫ u

⌫ , where s is the proper time. For constant, uniform

fields, the exact solution is furnished by taking the matrix exponential. The

expression for the matrix exponential is tractable, but somewhat onerous, even

after employing a rotation to simplify it [5]. The particle pusher obtained this

way is exactly Lorentz invariant. Preservation of the Euclidean norm of the

velocity in a magnetic field is merely a special case.

In order to obtain an equivalent pusher that can be expressed more easily,

we employ the relationship between four-vectors and second rank spinors [11].

Readers unfamiliar with this relationship may find the appendix useful. Let ⇣

be the 2⇥ 2 matrix representing the spinor that represents momentum. Then

u
µ =

1

2
tr(�µ

⇣) (3)

Here �
µ are the Pauli matrices if µ = [1, 2, 3] and the identity if µ = 0. The

inverse operation gives the matrix

⇣ =

0

@ u
0 + u

3
u
1 � iu

2

u
1 + iu

2
u
0 � u

3

1

A (4)

The steps used in [11] to derive the boost and rotation operators are a useful

guide in deriving the operator of time translation. Let the time translation

operator be denoted ⇤(�s), where �s is any interval in proper time. The

spinor is transformed as

⇣(s+�s) = ⇤(�s)⇣(s)⇤†(�s) (5)

It is useful to define the generator � by ⇤(ds) = 1+�ds. The equation of motion

for ⇣ is then
d⇣

ds
= �⇣ + ⇣�

†
. (6)

3

Notice round-off can affect diagonal. So far 
no noticeable issues.

Kinetic energy can come out negative since energy and momentum are updated independently, 
or put another way, γ ≥ 1 only holds to within a round-off error.  So far no noticeable issues.

Is there a directional bias?  Since the whole formulation is Lorentz invariant, any directional 
bias can only be due to round-off error.
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9

Performance on Titan V

(prescribed fields)
a=10

a=1000

63 steps per period in the particle’s frame
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Fig. 2. Test case of tunneling ionization of an Ar17+ ion positioned at
x = 0. Panel (a) shows the momentum distribution as computed by the
quadratic-unitary pusher. The color scale represents the modulus squared of
the quasi-classical S-matrix of the interaction, i.e., the probability to produce a
given photoelectron momentum u from an ion at position x. See Ref. [6] for
details. Panel (b) shows the rate of convergence of the several pushers, in terms
of the maximum photoelectron energy, u0

max, and the number of steps per optical
period, N2⇡ . (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)

Fig. 3. Push rates on an NVIDIA Titan V GPGPU.

photoelectron energy is plotted vs. the number of steps per opti-
cal cycle, N2⇡ , in Fig. 2(b). Each point of each curve represents 103

trials, where the ionization phase is the variable parameter. The
random number generator is seeded with the same value for each
set of 103 trials. The quadratic-unitary, exact-unitary, and SO(3,1)
results are almost indistinguishable, so only the quadratic-unitary
curve is shown. In this scenario, the quadratic-unitary pusher
converges fastest, and the Boris pusher converges slowest. In all
cases the time step is constant in proper time.

The above tests are not exhaustive. The crossed beam example
of Ref. [12] is a case where further difficulties are likely. Here, two
plane waves with short duration and amplitude a0 � 1 cross at
an angle in the tens of degrees range. In this case the particle
orbits are highly sensitive to initial conditions and the time step,
to the point where converged solutions sometimes cannot be

found. According to Ref. [12], the standard fourth order Runge–
Kutta method provides some improvement over the Boris, Vay,
and HC pushers. This suggests that the difficulty is not merely
in the momentum advance, but rather in the overall phase space
advance, which is only second order accurate once the leap-frog
scheme of Eq. (21) is adopted.

Another issue that is not addressed here is the effect of ap-
proximating the proper time step in the context of a particle-in-
cell code. The lowest order Eq. (24) is simple, but may introduce
errors of the same order as those that an advanced pusher al-
gorithm is meant to overcome in the first place. Based on a few
simple tests, we find that using the second order approximation
leads to faster convergence than HC, but only by a factor of a
few. In the particle-in-cell context, the interplay of spatial and
temporal discretization errors also has to be considered.

7. Performance

The TRACKER code is optimized for parallel processing on
either central processing units (CPU) or general purpose graphical
processing units (GPGPU). To test the ‘‘absolute performance’’ of
the various pushers, defined as particles pushed per second on
a single device, motion in a plane wave field of 105 particles for
106 steps is computed. It must be emphasized that this measure
of performance is decoupled from the error tolerance. The device
is an NVIDIA Titan V GPGPU. The programming model is Python
with PyOpenCL acceleration. Extraneous algorithms in TRACKER,
such as the ionization algorithm, adaptive time stepping, and
completion logic, are turned off. The cost of the field evaluation
is minimized by using plane wave formulas. The results are
summarized in Fig. 3. The quadratic-unitary pusher is the fastest,
with the HC and Boris pushers close behind. The exact unitary and
SO(3,1) pushers, which keep all orders in �s, are much slower.
Interestingly, the performance ranking in Fig. 3 is consistent with
the assumption that the number of special function evaluations
(including square roots) dominates the computing time. It should
be acknowledged that the rankings in Fig. 3 might change after a
determined optimization effort with any given pusher.

8. Conclusions

Previous work describes an extreme field particle pusher op-
erating in the representation of SO(3,1). This pusher is effective,
but the expressions involved are onerous to program. The ex-
pressions presented herein are much simpler, yet mathematically
identical. This is achieved by operating in the representation of
SU(2)⌦SU(2) instead of SO(3,1). Furthermore, an expansion in the
time step can be carried out to any desired order, while main-
taining the exact invariance properties of the pusher. The second
order expansion is accurate, easy to program, and involves no
special functions or square roots. It gives push rates comparable
to the standard Boris pusher, and produces accurate orbits in
extreme fields, in orders of magnitude fewer steps.
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random number generator is seeded with the same value for each
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results are almost indistinguishable, so only the quadratic-unitary
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and HC pushers. This suggests that the difficulty is not merely
in the momentum advance, but rather in the overall phase space
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scheme of Eq. (21) is adopted.
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The TRACKER code is optimized for parallel processing on
either central processing units (CPU) or general purpose graphical
processing units (GPGPU). To test the ‘‘absolute performance’’ of
the various pushers, defined as particles pushed per second on
a single device, motion in a plane wave field of 105 particles for
106 steps is computed. It must be emphasized that this measure
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is an NVIDIA Titan V GPGPU. The programming model is Python
with PyOpenCL acceleration. Extraneous algorithms in TRACKER,
such as the ionization algorithm, adaptive time stepping, and
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SO(3,1) pushers, which keep all orders in �s, are much slower.
Interestingly, the performance ranking in Fig. 3 is consistent with
the assumption that the number of special function evaluations
(including square roots) dominates the computing time. It should
be acknowledged that the rankings in Fig. 3 might change after a
determined optimization effort with any given pusher.
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Previous work describes an extreme field particle pusher op-
erating in the representation of SO(3,1). This pusher is effective,
but the expressions involved are onerous to program. The ex-
pressions presented herein are much simpler, yet mathematically
identical. This is achieved by operating in the representation of
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presents little difficulty. If the expansion (19) is used, there are no
caveats. If the exact operator is used, one must take precautions
in field free regions, where the vector ! is not well defined
numerically. In practice this is easy to manage. For example, using
the approximation

! ⇡ ⌦

⌦ + N�1�s�1 (20)

with N � 1 is sufficient in practice. If one is concerned about the
possibility of cancellation in the denominator, one can choose the
sign of the square root in the definition of ⌦ such that the real
part is always positive.

Generalization to the case of non-uniform fields is carried
out in the usual way. In the following sans-serif type represents
an abstract four-vector. The spacetime dependence of the field
distribution is accounted for by successively updating the world
point of the particle, x, and using the composition F(s) = F[x(s)].
The world line is discretized by

x(s + �s) = x(s) + u�s, (21)

where x and u are leapfrogged in time. The step size �s must be
sufficiently small to resolve variations in the field.

For single particle trajectories, advancing in proper time raises
no problems, and in fact, is often advantageous [5]. For self-
consistent simulations, one usually has to advance all particles
through an interval of time as measured by a laboratory frame
clock, and therefore the proper time advance of every particle is
different. In this scenario, one needs an expression for the proper
time step, �s, given the laboratory frame time step, �t . This is
formally obtained by integrating
dt
ds

= u0 = 1
2
tr

⇥
⇤(s)⇣ (0)⇤†(s)

⇤
(22)

to obtain a function t(s), and solving �t = t(�s) for �s. Here,
t ⌘ x0/c. The function t(s) can be estimated by substituting ⇤(2)

for ⇤ in (22) and expanding the result. This gives

t = u0s + eE · u
2mc

s2 + e2

6m2c2
⇥
u0E2 � u · E ⇥ B

⇤
s3 + O(s4) (23)

It is straightforward to extend this to higher orders. However,
solving for �s requires finding the roots of a polynomial. A simple
expression is obtained by truncating t(s) at the second order,
solving the quadratic equation, and expanding once again:

�s = �t
u0 � eE · u

2(u0)3mc
�t2 + O(�t3) (24)

Detailed evaluation of the suitability of this formula in the
particle-in-cell context is left for future work. Methods of trans-
forming a lab frame time step into proper time step are discussed
in [7,8].

6. Testing

The Naval Research Laboratory TRACKER code implements
the Boris [1], Vay [3], Higuera–Cary (HC) [4], quadratic-unitary,
exact-unitary, and SO(3,1) pushers. The advantages of the SO(3,1)
pusher, which is mathematically equivalent to the exact-unitary
pusher, are discussed in [5] and in the supplementary material
of [6] (the term ‘‘covariant pusher’’ is used in these references).
These articles show that the SO(3,1) pusher gives the correct
solution in orders of magnitude fewer steps than the standard
Boris pusher. The exact-unitary pusher, being mathematically
equivalent, has all the same properties, to within a round-off
error.

Consider electron orbits in a plane wave. In this case, the
quadratic-unitary pusher (19) is theoretically identical to the

Fig. 1. Orbits in a plane wave as computed by several numerical particle
pushers, and the analytical solution, for (a) a0 = 10 and (b) a0 = 1000. The
orbits are displayed in a Galilean frame comoving with the particle’s true orbit.
The proper time step is fixed to the same value in all cases.

exact-unitary and SO(3,1) pushers. Fig. 1 shows the spatial
orbit of a single electron as computed by the Boris, Vay, HC,
and quadratic-unitary pushers. The analytical solution at several
points is also shown for comparison. The wave amplitude is a0 =
10 in panel (a), and a0 = 1000 in panel (b). The radiation wave-
length, �, can be scaled arbitrarily. In all cases, the calculation is
run for 63 steps, with c�s = 0.1�/2⇡ . Note that a constant step
in proper time naturally leads to a constant phase step [5]. For
the lab frame pushers, the quadratic approximation of Eq. (23) is
used to obtain the lab frame step, �t . For a0 = 10, the quadratic-
unitary solution is indistinguishable from the analytical solution.
The HC pusher gives nearly the right behavior, but the errors are
visible. The Boris and Vay pushers are not viable for the given
parameters. For a0 = 1000, out of the four numerical solutions,
only the quadratic-unitary pusher is viable. If the cubic term in
Eq. (23) is retained, the Boris, Vay, and HC orbits are noticeably
perturbed, but not enough to change any conclusions.

As a more elaborate test, consider photoionization of hydro-
gen-like argon, under illumination by a 10 petawatt class laser
pulse, following Ref. [6]. The momentum distribution as com-
puted by the quadratic-unitary pusher is displayed in Fig. 2(a).
This reproduces Fig. 3(a) from [6]. The peak vector potential is
100mc2/e, the wavelength is 0.8 µm, the spot size is 5 µm,
and the pulse duration is 30 fs. In order to test the conver-
gence of the various pushers in this scenario, the maximum
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In general this leads to a root-finding problem.  A simple estimate is

This is used in all that follows, but a more accurate estimate is being put in

• Require a time dilation estimate for each particle



turboWAVE QED Module Example: uniform QED-scale magnetic field
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Load Gaussian electron bunch with γ=1000 into B=BS/1000



turboWAVE QED Module Benchmarking
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Cf. similar figure in J. Comp. Phys. 260, 273 (2014)



QED-PIC example with unitary pusher
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Example showing gamma generation with multi-PW pulse and thin target

Laser parameters
a = 380, I = 2e23 w/cm2

λ = 1 um, τ = 30 fs, r = 5 um

Plasma parameters
Pre-plasma = 40 um
Slab = 10 um
n = 20ncrit



Summary

• Unitary Pusher has been developed and implemented in turboWAVE
• This respects important invariance properties even when truncated
• Pusher is fast
• QED-PIC simulations are a natural application
• So far everything working satisfactorily
• Time dilation estimate is being improved
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