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Some other systematic parameter scans for a 
better control of the colliding pulse injection 
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Explore the untested nearly collinear scheme of 
the colliding pulse injection 
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Nearly counterpropagating CPI 
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Trapping versus angle 
(simulations)

For smaller angles (and even smaller than 90deg):
1. What if the injector is as strong/relativistic as the driver? If so, is the trapping possible 

and observable?
2. What does the transverse component of the beat wave do and what follows?
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Experiment schematic and laser parameters
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Chen, Maslarova, Wang, Li, Horný, and Umstadter (2022)

Chen, Maslarova, Wang, Li, and Umstadter (2022)

Experiment Schematic

Parameters Driver Injector

Input
(Measured)

Lambda (um) 0.8 0.8

Total Energy (J) 0.84 0.762

FWHM Duration (fs) 35 39

FWHM Diameter (um) 18 18

Strehl Ratio 0.8 0.8

Output
(Estimated)

Waist (um) 15.29 15.29

Peak Intensity (W/cm2) 4.91E+18 4.00E+18

Peak Power (TW) 18.03 14.68

a0 1.52 1.37

Electric Field (TV/m) 6.09 5.49

Laser Parameters
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Electron charge versus the delay between two 
laser pulses

13

Trapped 
electrons

1

2

Trapped 
electrons

1

2



Click to edit Master title style

Electron beam splitting and different splitting 
patterns at ~40fs delay
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Different splitting of the electron beam

Spectrum of the split beam
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Mutual injection of electrons onto both 
wakefields
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2D particle-in-cell simulations using 
electron density evolution and injection
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Eventually trapped 
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Transient relativistic 
plasma grating. 
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Outlook for future high-energy, compact, high-repetition LWFA 
and LWFA-based applications using colliding pulses
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Mitigating dephasing in later-buckets

Katsouleas, PRA(1986) 
Bulanov et al., (1997) 
Sprangle et al., PRE (2001) 
Rittershofer et al., Phys. Plasmas (2010)  

With N = 5 and suitable ne tapering, there 
could be 30x more energy gain for LWFA 
electron beams.

ne tapering (neglecting laser propagation effects)
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Mitigating dephasing in later-buckets

Katsouleas, PRA(1986) 
Bulanov et al., (1997) 
Sprangle et al., PRE (2001) 
Rittershofer et al., Phys. Plasmas (2010)  

With N = 5 and suitable ne tapering, there 
could be 30x more energy gain for LWFA 
electron beams.

Compact, high repetition plasma compressor 

Malkin, Shvets, and Fisch (1998)
Mourou, Fisch, Malkin, Toroker, 
Khazanov, Sergeev, Tajima (2011)
Ping, Cheng, Suckewer, Clark, 
and Fisch (2004)
Wu, Chen, Morozov, Suckewer 
(2019)

Conceptual schematic via Raman amplification

mm-scale 

ne tapering (neglecting laser propagation effects)
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Conclusions

(Experiment) Nearly collinear colliding pulse injection was 
demonstrated, with the injector as intense as the LWFA driver.

(Experiment) The injection was sensitive to the delay between 
two laser pulses and various e-beam splitting was observed.

(Simulations) Transverse interference initiated the injection 
process, by kicking electrons to form a relativistic plasma grating.

(Simulations) Strong interference caused a strong plasma 
grating, which splits lasers, plasma wakefields and e-beams.
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Simulation parameters
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2D particle-in-cell simulations using 
electron energy evolution
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