20th Advanced Accelerator Concepts Workshop

Contribution ID: 62 Type: Student Poster

Simulation Results of a Clamped Multicell Dielectric Disk Accelerating Structure

Tuesday, 8 November 2022 17:00 (2h 30m)

A method of decreasing the required footprint of linear electron accelerators and to improve their energy efficiency is utilizing short RF pulses (~9 ns) with Dielectric Disk Accelerators (DDA). A DDA is an accelerating structure that utilizes dielectric disks in its design to improve the shunt impedance. Two DDA structures have been designed and tested at the Argonne Wakefield Accelerator. A single cell clamped DDA structure recently achieved an accelerating gradient of 102 MV/m. A multicell clamped DDA structure has been designed and is currently being fabricated. Simulation results for this new structure show a 108 MV/m accelerating gradient with 400 MW of input power with a high shunt impedance and group velocity. Engineering designs have been improved from the single cell structure to ensure consistent clamping over the entire structure.

Acknowledgments

Funding support provided by the U.S. Department of Energy (DOE) under Small Business Innovation Research Contract No. DE-SC0019864 and the U.S. DOE Office of Science under Contract No. DE-AC02-06CH11357.

Primary author: WEATHERLY, Sarah (Illinois Institute of Technology, Argonne National Laboratory)

Presenter: WEATHERLY, Sarah (Illinois Institute of Technology, Argonne National Laboratory)

Session Classification: Poster Session and Reception

Track Classification: Poster Session: WG3 Poster: Laser and High-Gradient Structure-Based Accel-

eration