Laboratoire d'Optique Appliquée

 $Palaiseau - FRANCE \ {\tt http://loa.ensta.fr}$

Modulation of dense electron beams in nanostructures: A simulation study in preparation of the FACET-II E-336 experiment

Alexander Knetsch on behalf of FACET-II E-336 collaboration

especially M. Gilljohann, Y. Mankovska, P. San Miguel Claveria X. Davoine, who performed the presented simulations

Principal Investigators: Sébastien Corde and Toshiki Tajima

Motivation and goals: With small structures come high fields

The wave-breaking field

$$E[GV/m] = m_e \omega_p c/e \approx 100 \sqrt{n_0 [10^{18} cm^{-3}]}$$

Motivation and goals: With small structures come high fields

The wave-breaking field $E[{\rm GV/m}] = m_e \omega_p c/e \approx 100 \sqrt{n_0 [10^{18} {\rm cm}^{-3}]}$

- To reach TV/m accelerating fields, we need solid density plasmas (10²⁴ cm⁻³)
- Electron-electron collisions are a hazard to beam quality and transport
- Beam-guiding nano-structured targets such as crystals or nanotubes

Motivation and goals: With small structures come high fields

R. Ariniello, et al. "Channeling Acceleration in Crystals and Nanostructures and Studies of Solid Plasmas: New Opportunities." *arXiv preprint arXiv:2203.07459* (2022).

The target installed at FACET-II

Science goals of E-336

- Demonstrate feasibility of the study of beam-nanotarget interaction and of beaminduced wakefields in nanotargets
- Observation of electron beam nano-modulation
- Observation of betatron X-ray radiation
- Confirmation of simulation models

Pre-ionized nanotubes at FACET-II

- Simulation study with achievable beam parameters
- Electron beam overfills nanotube array

loa

Pre-ionized nanotubes

• Strong transverse modulation in charge density High-resolution

loa

8

• Transverse 'microbunching' in the vacuum gaps.

Pre-ionized nanotubes

- Divergence factor 3-5 higher than expected from only multiple scattering
- Ideal as experimental observable

loa

9

Simulation of tubes in pre-ionized Alumina

Simulation of tubes in Alumina and Silica with ionization

2D simulations parameters

- Bunch radius
 - 5 µm
- Nanotube diameter
 - 2000 nm
 - 200 nm
 - 20 nm (beam clipped)
- Nanotube material
 - Silica
 - 11.7 *eV*,
 - $\lambda_p = 270 \ nm$ and
 - $k_p^{-1} \approx 40 \ nm$ for full 1st ionization
 - Alumina
 - 10.5 eV
 - $\lambda_p = 180 \ nm$ and
 - $k_p^{-1} \approx 30 \ nm$ for full 1st ionization

Alumina Bulk $\sigma_{\rm b}$ =5 um z ~ 140 um

Alumina 2000nm $\sigma_b=5\mu m$

- Beam self field ionizes the solid-density material
- Propagation of self-fields into the bulk shielded by ionized surface plasma

14

loa

Alumina 2000nm $\sigma_b=5 \mu m z \sim 230 \mu m$

Silica 2000nm $\sigma_{\rm b}$ =5 µm z ~ 230 µm

Alumina 200nm $\sigma_{\rm b}$ =5 µm z ~ 230 µm

Alumina 20nm $\sigma_{\rm b}$ =5 µm z ~ 230 µm

Longitudinal modulation in d = 20 nm case

Long. modulation from wakefields?

Modulation has $\lambda_{mod} \approx 11 \,\mu\text{m}$. For fully ionized first level of bulk $\lambda_{bulk} = 175 \,\text{nm}$

However, Al only partially ionized with $n = 8.5e^{-3} n_{Al}$

• Corresponds to $\lambda = 1.8 \,\mu m$

Observed modulation does not correspond to the plasma frequency of the ionized plasma.

Comparison pre-ionized vs. neutral alumina

- Bunch radius
 - 5 µm
- Nanotube diameter
 - 2000 nm
 - 1000 nm
 - 500 nm
 - 200 nm
 - 100 nm
- Nanotube material
 - Alumina (neutral)
 - 10.5 eV
 - $\lambda_p = 180 \ nm$ for full ionization
 - Alumina (pre-ionized)
 - 1st level fully ionized

Comparison pre-ionized vs. neutral alumina

Larger diameter tubes lead to

- higher transverse momentum but less particles are affected
- Less effect on the core of the beam

loa

Comparison pre-ionized vs. neutral alumina

Larger diameter tubes lead to

- higher transverse momentum but less particles are affected
- Less effect on the core of the beam

Tilted tubes

Tilting the target leads to a general kick of the beam

Tilted tubes

Kicks are easy to observe on electron spectrometer as well as x-ray diagnostics

loa

- First simulation study performed to guide experimental observables of the E-336 experiment
 - Beam-divergence
 - Beam-deflection
 - Transverse nano-modulation
 - X-ray radiation
- More effects such as collisions will need to be implemented
- Explanation of observed longitudinal modulation
- Experimental data coming soon... stay tuned

Thank you for your attention

28