

High Efficiency RF Source Development

Lawrence Ives, Calabazas Creek Research, San Mateo, CA. USA

- 100 kW, 1.3 GHz Magnetron w/ Phase and amplitude control
- Magnetron frequency/phase control with varactors
- 100 kW, High efficiency, L-Band klystron
- 350 700 MHz, 200 kW Power Grid Tube RF sources
- 700 MHz Multiple Beam IOT

A 100 kW, 1.3 GHz Amplitude and Phase Controlled Magnetron for Accelerators

Michael Read¹, R. Lawrence Ives¹, Brian Chase², John Reid², Chris Walker³ and Jeff Conant³

[1] Calabazas Creek Research Inc., San Mateo, CA 94404
[2] Fermi National Accelerator Laboratory Batavia IL 60510-5011
[3] Communications and Power Industries LLC, Beverly, MA, USA 01915

Funded by the US Department of Energy under SBIR grant DE-SC0011229

Fermilab Approach

- Externally phase lock the magnetron,
- Achieve amplitude control by phase modulating the locking signal to transfer power to side bands
 - Side bands are rejected by high Q accelerator cavity
 - Power into the cavity = Magnetron power less the side band power

CPI Magnetron

- 1.30 GHz
- 100 kW peak
- 10 kW average
- 1.5 ms pulsewidth

Packaged Magnetron System

Efficiency

Efficiency varied between 81% and 87%, depending on parameters

Phase Modulation

50 kHz Phase Modulation

Magnetron Amplitude vs Phase Modulation

$$\operatorname{Sii}(f,M) \coloneqq \left[\operatorname{J0}(M) \,\delta\!\!\left(f,f_{c}\right) + \sum_{k=1}^{20} \left[\operatorname{Jn}(k,M) \cdot \delta\!\!\left[f,\!\left(f_{c}+k \cdot F_{m}\right)\right] + (-1)^{k} \cdot \operatorname{Jn}(k,M) \cdot \delta\!\!\left[f,\!\left(f_{c}-k \cdot F_{m}\right)\right] \right] \right]$$

Cost for 100 kW System

(Exclusive of high voltage supply)

Total	\$97,000
Packaging	\$10,000
Controls	\$10,000
Circulator w waveguide	\$20,000
500 W SS amplifier	\$17,000
Magnetron	\$40,000

Magnetron System Cost ~ \$1/Watt (Klystron cost ~ \$4/Watt)

A 1.3 GHz 100 kW Ultra-high Efficiency Klystron

Michael Read¹, Aaron Jensen², R. Lawrence Ives¹, Thomas Haberman¹, David Marsden¹, and George Collins¹

[1] Calabazas Creek Research Inc., 490 Port Drive San Mateo, CA 94404
[2] Leidos, Center for EM Manager DEOST, Billerica, MA 01821
Communications & Power Industries, LLC, Palo Alto, CA 95304

Funded by the US Department of Energy under SBIR grant DE-SC0017789.

Core Oscillation Method (COM)*

- Cavity spacing set wider than the normal bunch oscillation length
- Antibunch particles monotonically approach the central

• Circuits are long

* A. Yu.Bajkov, D.M.Petrov "Problems of creation powerful and super- power klystrons with efficiency up to 90%", International University Conference "Electronics and Radio physics of Ultra-high Frequencies", St. Petersburg, May 24–28, 1999, pp. 5–8.

Design Parameters

- COM design with 7 cavities
- Parameters
 - Voltage
 - Current
 - Beam diam
 - Drift tube diam
 - RF structure length

53.5 kV 2.46 A (0.2 micropervs) 0.6 cm 1.0 cm 205 cm

Simulation Summary

Input Power (W)

Code	Power	Efficiency
TESLA	104.5 kW	79.5%
AJDISK	106 kW	81%
KLYC	103.5 kW	79%
MAGIC	102 kW	78%

Cavity Locations and B-Field Profile

$$\begin{split} P &= 104.5 \text{ kW} \\ \eta &= 79.5\% \end{split}$$

Beam Trajectories Near Output

Solid Models of Klystron

Partial Seal-in

IVEC 2022

High Efficiency Klystron Summary

- Seven Cavity COM design
- Simulation of 'as built' klystron predicts 78.2% efficiency
- Final seal in next two weeks
- Testing to start January 2023

Multiple Beam Power Grid Tubes for High Frequency and High-Power Operation

Lawrence Ives, Michael Read, David Marsden, Thuc Bui Calabazas Creek Research, San Mateo, CA. USA

Ricky Ho, Nileshwar Chaudar, Christopher McVey, Tom Cox Communications & Power Industries, LLC Palo Alto, CA 94304 USA

> James M. Potter JP Accelerator Works Los Alamos, NM USA

This research funded by DOE SBIR Grant DE-SC0018838

25 kW 425 MHz Triode-based RF Source

YU-176 Triode

Efficiency 90% (Class C)

YU-176 Grid Cathode Assembly

Features

- Oxide cathode
 - \$916 factory cost
- Grid
 - cut from commercial tungsten screen
 - brazed to tungsten supports
- Integral ceramics and vacuum seals
- Beam power 28 kW
- Total cost \$1,500

Beam Power for 200 kW RF Source

Eight YU-176 grid cathode assemblies 230 kW of beam power

350 MHz Cavities

- MB triode tube installs from top (blue)
- Single input cavity below tube
- Upper and lower output cavities with coax output between
- Upper cavity is frequency tuning element
- Lower cavity is variable output coupling element

Output Cavity Simulation

Tuning range for output cavity (325 – 500 MHz)

Gain Issue

- Gain ~14 dB for triode based sources
- 200kW RF source requires 6.5 kW driver
- Driver: Single-beam triode driver Same length as multi-beam source with smaller diameter

200 kW, 350 MHz RF System

Net Gain	28 dB
Net Efficiency	~ 80 ?%

200 kW CW RF Source Cost 350 – 700 MHz

Estimated cost: \$100K for 200 kW source and driver Triode-based system \$0.50/Watt ~72%

Klystron: MBIOT: Solid State:

50-65% 65-75% ~60%

MB Triode Assembly Status and Scheduled

- MB Triode assembly completed and testing in progress (grid to cathode resistance, peak emission, current division, cutoff voltage)
- Once tube is successfully verified, will assemble the multiple beam cavities for testing in early 2023

HIGH-EFFICENCY, HIGH AVERAGE POWER INDUCTIVE OUTPUT TUBES

H.P. Freund,¹ R.L. Ives,¹ M. Read, T. Bui¹, T. Habermann¹, David Marsden¹, Paul Krzeminski², Takuji Kamura² ¹Calabazas Creek Research, San Mateo, CA ²Communications & Power Industries, LLC, Palo Alto, CA

Work supported by the US Department of Energy Grant No. DE-SC0019800

Goals and Approach

Goals:

- Output power
- Frequency
- Number of beams
- Efficiency
- Reduce size and cost

Approach

- Include 3rd harmonic drive power to increase efficiency
- Implement compact input coupler to reduce size and cost
- Use molybdenum grids to reduce cost and risk

200 kW CW 700 MHz eight 80+%

3rd HARMONIC TEST CASE

- Simulated annular beam at 700 MHz with:
 - 37 kV/6.67 A
 - Annular Beam with inner/outer radii = 5.128 cm/8.079 cm
 - $I_{avg}/I_p = 0.15 \Rightarrow \tau_{width}/\tau_{pulse} = 0.3$
 - $R/Q = 100 \Omega$
 - Q = 84.6 (loaded)
 - Cavity Radius = 9.009 cm
 - Cavity Length = 9.144 cm
 - Gap Length = 3.1 cm (centered in the Cavity)
 - Solenoid Field = 126 G (Brillouin Field)
- Simulation results indicate:
 - Optimal performance when the phase of the 3^{rd} harmonic relative to the fundamental is π
 - Efficiency is enhanced from 84.4% to 86.3%

NEMISIS MBIOT SIMULATON

- Eight beam configuration circulating the cavity at the midpoint
 - *f*=700 MHz
 - 30 kV/6.67 A
 - $R/Q = 186 \Omega, Q = 120$
 - $L_{cavity} = 9.144 \text{ cm}, L_{gap} = 3.9 \text{ cm} \text{ (centered)}$

- Perveance $\approx 1.3 \ \mu P$
- Peak efficiency with the 3rd harmonic
 - Peaks for phase shift of π radians
 - Peak efficiency ≈ 94%
 - Expect to reach wallplug efficiency above 80%

METAL GRID DESIGN

Current IOTs use pyrolytic graphite (PG) grids

- Difficult to fabricate
- Expensive
- Relatively low yield

MBIOT beam power distributed over multiple beams

- Reduced power loading
- Thermomechanical analysis predicts good performance
- Significantly cheaper and higher yield

Beam Optics Analyzer thermomechanical analysis with beam interception and cathode radiation

TEMPERATURES

Moly grids considerably cooler than PG grids

THERMAL STRESS & AXIAL DISPLACEMENT

Highest stress is on the grid rim, but still below Moly tensile strength

At temperature, grid OD moves closer to the emitter 1.9 mils, ID closer 3.3 mils

Compensation required for increased thermal expansion

Input Coupler

- Input Coupler for CPI/Thales and L3 MBIOTS large and complex
- CCR input coupler design much simpler

Input coupler for CCR MBIOT

Input coupler for CPI/Thales MBIOT

Input Coupler

Challenge – develop coupler transmitting fundamental and 3rd harmonic

Incorporated structures/tuners specific to each frequency

Input Cavity Tuning

Note – Input cavity is at atmospheric pressure

200 kW, 700 MHz MBIOT

- Computational design complete
- Drawings and parts procurement in progress
- Tests scheduled for spring 2023

MBIOT Status and Summary

Investigating three improvements

- Adding 3rd harmonic drive to improve efficiency
 - is efficiency gain achieved
 - does improvement justify the cost
- Replacing PG grids with molybdenum grids
- Simplifying the input coupler

Status

- Most drawings completed
- Long lead time parts are on order
- Expect to start assembly in January 2023
- Testing scheduled for spring 2023

Summary

RF Sources and Key Features

- Magnetron System 100 kW 1.3 GHz Amp/Phase Control 80+% efficiency \$1/Watt Completed
- High Efficiency Klystron 100 kW CW 1.3 GHz 78% Freq/Pwr Scalable Test in January 2023
- Triode-base RF sources 200 kW CW 350–700 MHz \$0.5/Watt compact MB Triode in test
- Multiple Beam IOT 700 MHz 200 CW kW 80% Drawings and fabrication in progress Test in spring 2023

New RF Source Development

RF Sources and Key Features

- Magnetron System 100 kW 1.3 GHz Amp/Phase Control 80+% efficiency \$1/Watt Completed
- High Efficiency Klystron 100 kW CW 1.3 GHz 78% Freq/Pwr Scalable Test in January 2023
- Triode-base RF sources 200 kW CW 350–700 MHz \$0.5/Watt compact MB Triode in test
- Multiple Beam IOT 700 MHz 200 CW kW 80% Drawings and fabrication in progress Test in spring 2023