

Evaluation of Multipactor Suppression in Dielectric Accelerators By DLC coating

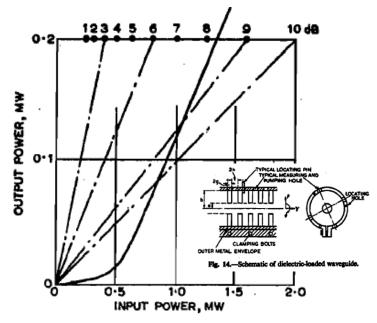
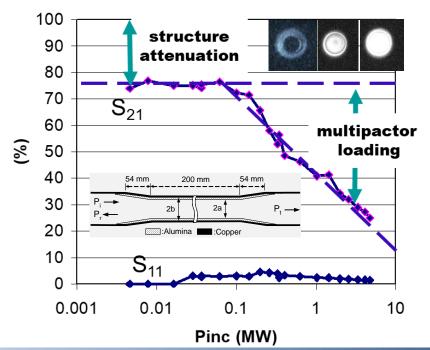
Chunguang Jing Euclid Beamlabs, LLC

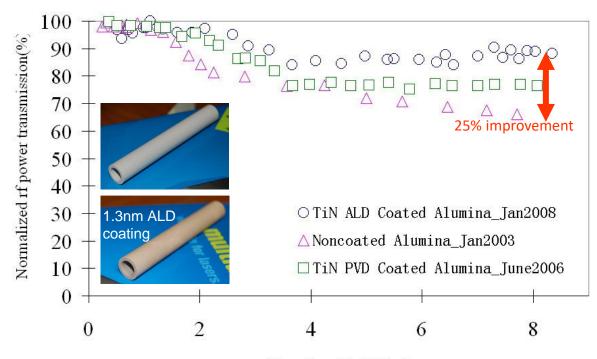
AAC 2022

History of Discovery of Multipactor in Dielectric accelerators

First discovery of Multipactor in dielectric accelerators (R.B. R.-Shersby-Harvie, *et al.*, *Proc. I.E.E.* B., 104 (1957) 273.)

It stated that Multipactor cured by **degreasing** structure and replacing oil pump with **mercury pump**.

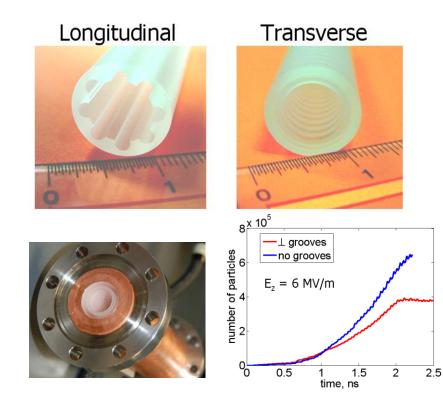




Fig. 25.-High-power attenuation.

Re-discovery of Multipactor in dielectric accelerators (J. G. Power, *et al, Phys. Rev. Lett.* 92, 164801 (2004).)

Tried variety of measures to suppress multipactor. Each of them has pros and cons.

History of Fighting Multipactor in Dielectric accelerators (I): TiN Coating

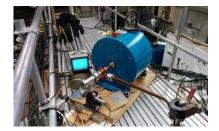

- Limited suppression on Multipactor
- Degrade over long time operation
- TiN coating is lossy, sensitive to the thickness
- TiN coating is vulnerable to the oxidation

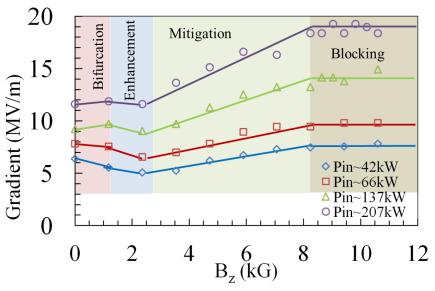
Gradient(MV/m)

C. Jing, et al., IEEE Trans. Plasma Sci. 38(6), 1354–1360 (2010).

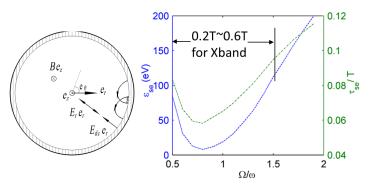
History of Fighting Multipactor in Dielectric accelerators (II): surface modification

- introducing the fabrication complication.
- simulation shows its effectiveness, but no high power test being performed.
- effectiveness is sensitive the geometry

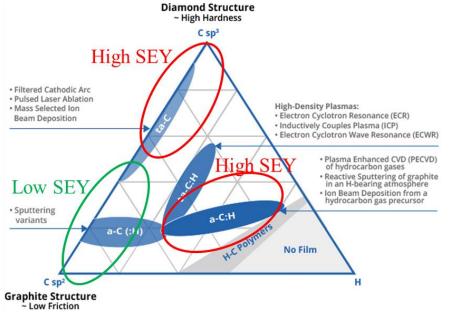


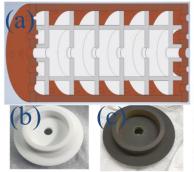

S. Antipov, et al, Proc. PAC2011, New York, NY, USA, pp.310-312.

History of Fighting Multipactor in Dielectric accelerators (III): solenoid


Principle: the introduced Bz can effectively alter the transit time τ of secondary electrons. A proper strength of Bz makes τ in the range of (T/2,T) so that Er is always pushing electrons back to the dielectric surface, leading to a very small impact energy, then SEE<1.

- Very bulky because of the high demanding of the solenoid strength.
- Not feasible for high gradient structures


•C. Jing, et al, Appl. Phys. Lett. 108, 193501 (2016)


•C. Chang, et al, J. Appl. Phys. 110, 063304 (2011).

euclid

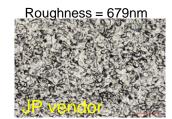
New Method Fighting Multipactor in Dielectric accelerators: DLC coating

- 100% effective on Multipactor suppression.
- No impact on Q factor of the structure
- Good bonding on ceramic
- Mature technique in industrial applications to increase durability of machine tools.

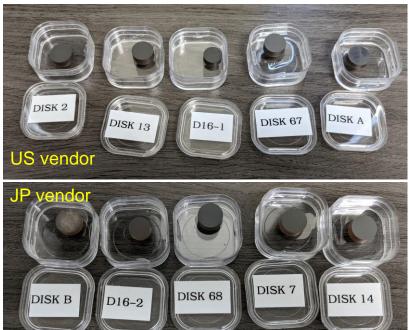
Coating	f_0 [MHz]	β	Q_0		
w/o coating (set 1)	5708.29	1.4	112000		
TiN (set 1)	5713.01	0.79	64000		
w/o coating (set 2)	5717.10	0.93	113000		
DLC (set 2)	5717.07	1.0	116000		

TABLE I: Effect of TiN coating and DLC coating on the Q-value of the five-cell DAA cavity. There are two sets of dielectric cells in the five-cell DAA cavity, each with different dimensional errors. TiN coating was applied to both sides of all cells in set 1, with a thickness of 10 [nm]. DLC coating with a thickness of 0.5 [μ m] was applied on both sides of all cells in set 2. The Q-value was measured via the coupler and mode converter shown in Figure 1 (c) from S₁₁ using the Agilent N5230A network analyzer.

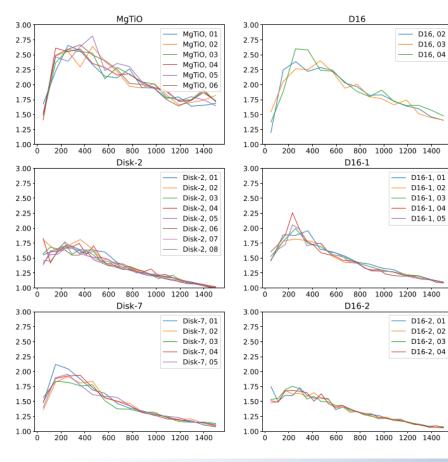
•Pedro. Costa Pinto, EIC2021 Accelerator Partnership Workshop

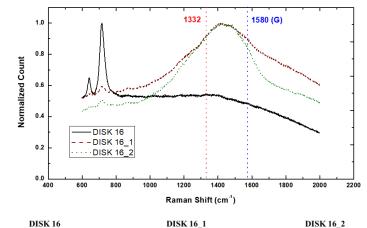

•Shingo Mori, et al, Phys. Rev. Accel. Beams 24, 022001, 2021

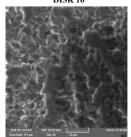
Investigating DLC coating at Euclid in Collaboration with CERN (I)

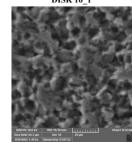

No change of dielectric constant for all different materials.

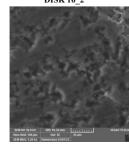
- Other than high permittivity (eps~50) material, all other ceramics has improved loss tangent. Even for eps50 material, loss tangent<2e-4</p>
- Surface resistance of all DLC coatings is above 1MΩ per □ and could not be measured with the using a Cylindrical four-point probe head from Jandel.
- We were in collaboration with CERN to get SEY measurement.





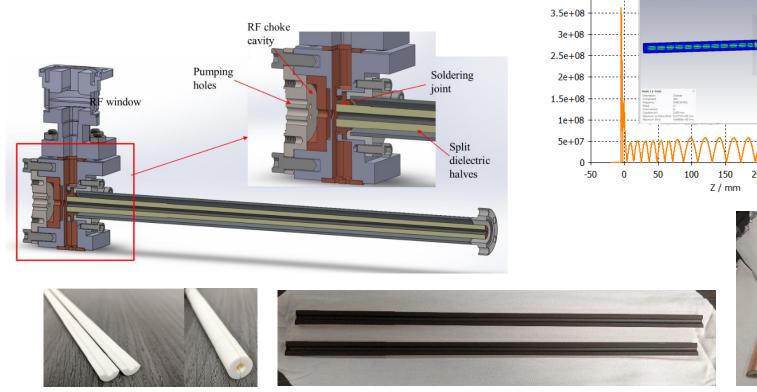



Investigating DLC coating at Euclid in Collaboration with CERN (II)



DLC films will always have sp² trigonal C-atoms. The quality of DLC films is given by the peak intensity ratio: I(1332): I_G . A high ratio (~ 4-5) indicates a high sp³ diamond-like coating.

Investigating DLC coating at Euclid in Collaboration with CERN (III)


	Other			SEY			Epsilon	Epsilon	Tan Delta	Tan Delta	Cond. w/o	Cond. w/
#	name	Material	Coating vendors	measurement	Raman	SEM	w/o DLC	w/ DLC	w/o DLC	w/ DLC	DLC [S/m]	DLC [S/m]
1	CERN # 1	MgTiO3	a-C, CERN	yes	yes	yes						
2	CERN # 2	MgTiO3	a-C, CERN	yes	yes	yes						
3	CERN # 3	MgTiO3	a-C, CERN	yes	yes	yes						
4	DISK-14	MgTi Oxide based Conductive Ceramic	NONE	yes	yes	yes	15		1.06E-04		5.88E-11	
5	DISK-2	MgTi Oxide based Conductive Ceramic	US vendor	yes	yes	yes	15.1	14.9	4.60E-05	3.59E-05	4.79E-12	6.95E-10
6	DISK-7	MgTi Oxide based Conductive Ceramic	Japanese vendor	yes	yes	yes	15.1	15.1	4.60E-05	3.91E-05	4.79E-12	2.93E-11
7	D16	MgTiO3	NONE	yes	yes	yes						
8	D16-1	MgTiO3	US vendor	yes	yes	yes		16.7		3.00E-05		2.51E-09
9	D16-2	MgTiO3	Japanese vendor	yes	yes	yes		16.5		3.02E-05		
10		MgTi Oxide based Conductive Ceramic	US vendor	no	yes	yes	15.2	15.1	1.45E-04	1.42E-04	2.46E-09	1.58E-08
11	DISK-68	MgTi Oxide based Conductive Ceramic	Japanese vendor	no	yes	yes	15.2	15.0	1.43E-04	1.42E-04	1.84E-09	

Details refer to: A. Grudiev, et al, CLIC-Note-1175, 2022

In Practice: A low energy split dielectric accelerator (I)--Development

In order to apply DLC coating, the dielectric tube is cut into two halves.

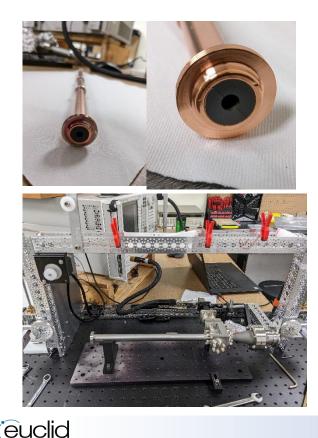
e_Z (Z)

200

250

e_Z (Z)

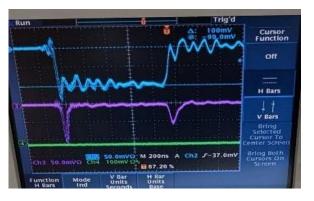
lin+07 -7e+07 -6e+07 -3a+07 -3a+07 -3a+07 -2a+07 -2a+07 -1a+07 -


-

350

300

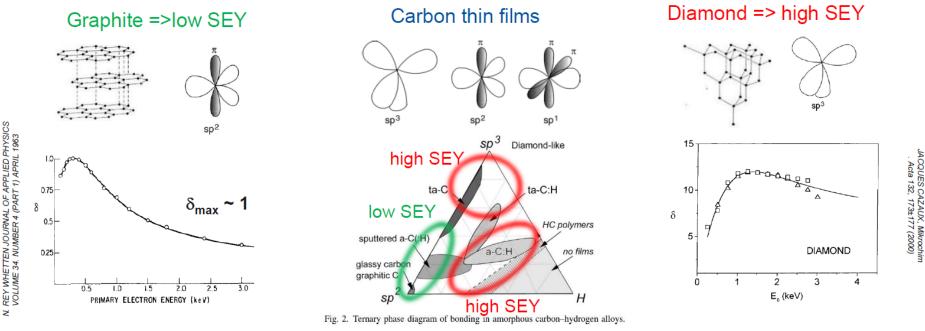
4e+08


In Practice: A low energy split dielectric accelerator (II)--Test

3 typical MP traces

Conditioned away

- Multipactor can be fully suppressed in a few MV/m of gradient range.
- RF breakdown is still an issue to overcome.


Summary and Next

- Solving multipactor using the approach of Split DLA and DLC coating is promising. This may be an ultimate solution.
- RF breakdowns currently limits the final demonstration.
- If success, it will be a game changer for ultracompact linac for industrial applications

1 – Introduction to low SEE a-C films

The SEY (δ) of carbon materials depend on the molecular bonds between carbon atoms.

J. Robertson/Materials Science and Engineering R 37 (2002) 129-281

Vacuum, Surfaces & Coatings Group Technology Department