

Dielectric Accelerators in Cryogenic Temperature

Chunguang Jing Euclid Techlabs (Beamlabs), LLC

AAC 2022

Motivation (I)---Cold Copper Structure

Parameter	300 K	77 K
Frequency (GHz)	11.402	11.438
Q_0	10000	22500
$Q_{ m ext}$	10000	10000
Shunt impedance $\left(M\Omega/m\right)$	155	349
Peak surface E (MV/m)	250	250
Peak surface H (MA/m)	0.575	0.575
Steady state rf power (MW)	17	9
Iris diameter (mm)	2.6	2.6
Length (cm)	26	26

- Sami Tantawi, et al, Phys. Rev. Accel. Beams 23, 092001 (2020)
- Mamdouh Nasr, et al, Phys. Rev. Accel. Beams 24, 093201 (2021)

Motivation (II)---Dielectric Assisted structure in cold

5 cell DAA Structure

Parameter	Five-cell DAA structure
Dielectric material	Magnesia
ϵ_r	9.64
$ an \delta$	$6.0 imes10^{-6}$
Accelerator type	Standing wave type
Accelerating mode	${ m TM}_{02}$ - π mode
Operation frequency	5.712 GHz
Number of accelerating cells	5
Total cavity length	157.5 mm
Q_0	126,400
$Z_{ m sh}$	$630 \ \mathrm{M\Omega/m}$
$E_{ m max}/E_0$	2.92
$H_{ m max}/E_0$	2.74 mA/V

- Daisuke Satoh, et al, Phys. Rev. Accel. Beams 20, 091302 (2017)
- Daisuke Satoh, *et al*, *Nucl. Inst. and Meth. Phys. Res. B* 459 (2019) 148–152.
- Shingo Mori, et al, Phys. Rev. Accel. Beams 24, 022001 (2021)

Basic cavity and accelerator parameters of cryogenic temperature operating DAA structure.

Parameters	MGO5CV1		
Acc. type	standing wave type		
Acc. Mode	TM_{02} - π mode		
Number of Acc. cells	5		
Frequency	5.712 GHz		
Temperature	27 K		
Dielectric Material	Magnesia		
ε _r	9.64		
$tan\delta$	$6.6 imes 10^{-7}$		
Q_o	765,300		
Z_{sh}	3.8 GΩ/m		

Motivation (III)--- comparison

Variety of dielectric structures	Pros	Cons
dielectric vacuum Dielectric loaded accelerator	 Most developed structure Simple fabrication Low surface fields 	 Moderate r/Q ~20MΩ/m Weak points: tapered matching section
Copper FIG. 1(b) Dielectric Material <i>a₁ b₁ c₁ r_θ</i> accelerator End cell Regular cell (a)	 Very high shunt impedance ~620MΩ/m Prototype fabricated 	 Operated in TM₀₂ mode; vulnerable to TM₀₁ mode excitation. Very complicated in fabrication; Current prototype is clamped together, and may not sustain high gradient Weak points: high surface fields at joint between copper and dielectric
Dielectric disk accelerator	 High shunt impedance ~120MΩ/m TM₀₁ mode operation Easy tuning of each cell possible Operation in different modes same as conventional copper structures (TW w different phase advance, SW) Cryogenic shunt impedance ~550MΩ/m 	 Many pcs needed Connection to copper is challenging
Dielectric corrugated accelerator	 Moderate shunt impedance ~80MΩ/m Feasibility of single piece fabrication TM₀₁ mode operation Cryogenic shunt impedance ~550MΩ/m 	 Mechanical support and cooling are only at the ends Necessary for support and cooling end walls reduce shunt impedance Not many parameters to improve shunt impedance

Dielectric Materials in Cold

euclid

Ref.: Daisuke Satoh, et al, Nucl. Inst. and Meth. Phys. Res. B 459 (2019) 148–152.

Example 1: Cryogenic Dielectric Corrugated Accelerator (I)

Example 1: Cryogenic Dielectric Corrugated Accelerator (II)

	tan(ð)	σ _{copper} (S/m)	Q	$r/Q (k\Omega/m)$	r (MΩ/m)
77 K	3e-6	3.0e8	1.11e5	4.91	547.41
300 K	1e-4	5.8e7	1.75e4	4.91	86.06

Note: Other major simulation parameters: f=11.7 GHz, beam aperture 2a=2.6 mm, TM₀₁ π -mode standing wave, dielectric constant=9.8.

The thermal simulation of the X-band DCA prototype under 100 MV/m of gradient and 28 W of heat load (low duty factor at AWA).

Figure 2.4.2. Thermal conductivity of polycrystalline Al₂O₃ vs. temperature. Data from Berman [1952], Berman et al. [1950], Alterovitz et al. [1975], Nemoto et al. [1985], and Touloukian et al. [1970; citations therein].

Example 2: Cryogenic Dielectric Disk Accelerator

euclid

Structure	Temp, K	aperture	epsilon	Rsh, MΩ/m
DDA	300	4	50	165
DDA	300	2.6	50	181
DDA	77	4	50	423
DDA	77	2.6	50	463
DDA 2mm nose, Epk=2.5 (same as SLAC)	77	2.6	50	550
DDA 3mm nose, Epk=5	77	2.6	50	706

The thermal simulation of the X-band DCA prototype under 100 MV/m of gradient and 28 W of heat load.

Summary and Next

- Dielectric accelerator in Cryogenic temperature shows surprisingly high shunt impedance.
- Challenges remains as conventional dielectric accelerators, i.e. breakdowns due to variety of micro gaps.
- Worth to explore. The first step is to characterize different dielectric materials at low temperature.

Ref.: Daisuke Satoh, *et al*, *Nucl. Inst. and Meth. Phys. Res. B* 459 (2019) 148–152.

