

High-Gradient Accelerating Structures for 3-GeV Proton Radiography Booster

Sergey Kurennoy, Yuri Batygin, and Eric Olivas LANL, AOT Division

Advanced Accelerator Concepts Workshop, Long Island, NY, USA November 10, 2022

LA-UR-22-31724

Compact High-Gradient Booster for Enhanced Proton Radiography

- What: High-gradient (HG) linear accelerator (linac) after the existing LANSCE linac to increase the proton beam energy from 800 MeV to 3 GeV.
- Why: This increases proton radiography (pRad) resolution 10 times.
- ▶ How: Compact 3-GeV high-gradient pRad booster:
 - Will be based on S- & C-band HG structures adapted for protons (v/c = 0.84 0.97). Prototype high-gradient proton C-band cavities will be tested at LANL.
 - ▶ Will have an optimal beam-physics design based on front-to-end modeling.
 - Fits the site and can be used in parallel with the existing 800-MeV pRad.
 - Can be the first-ever high-gradient normal-conducting proton linear accelerator.

Los Alamos Neutron Science Center (LANSCE)

Potential Location of High-Gradient pRad booster to 3 GeV at LANSCE

HG pRad Booster – Requirements

- Booster must satisfy pRad needs and fit the LANSCE site:
 - provide 1 to 20 <u>short beam pulses (<80 ns)</u> separated by variable intervals of 0.2-2 μs. Each short beam pulse contains proton bunches following at 5 ns ($f_{\rm b}$ = 201.25 MHz bunch repetition frequency) and produces one radiograph.
 - <u>very low duty</u>: one pulse train per event; a few events per day.
 - reduce relative energy spread at 3 GeV as ~1/p for good radiography quality: from $\Delta p/p = 10^{-3}$ at 800 MeV $\rightarrow 3.3 \cdot 10^{-4}$ at 3 GeV.
- Development of accelerator structures that support such a design:
 - HG structures so far have only been designed for electrons -> adapt for protons.
 - beam magnetic focusing scheme defines minimal allowable cavity apertures.
 - added L-band buncher & de-buncher + drifts to reduce beam energy spread.
 - <u>standing-wave accelerator structures with distributed coupling</u> are chosen.
- High peak power (~10s MW) RF sources (klystrons) that can support the required beam structure. Variable <u>single</u> RF pulse up to 50 µs.

Layout of 3-GeV Booster

The booster with reduced gradients needs bends to fit into existing buildings but saves RF

High-Gradient Structure Development

• Re-entrant cavity shapes were optimized to achieve high efficiency.

Bare S-band (14 f_b = 2817.5 MHz) structure for β =0.84: 5-cell structure section (left); electric field within a cell; current distribution on the cell inner surface (right).

Cavity Parameters at Gradient E

f	β	<i>a</i> , mm	<i>E</i> , MV/m	E _{max} /E	<i>Ζ'</i> , MΩ/m	<i>P'</i> , MW/m
L	0.84	8	12	4.3	68.6	2.1
S	0.84	8	25	4.23	69.9	8.9
S	0.93	6.5	25	4.1	83.4	7.5
С	0.93	6.5	40	3.63	76.9	20.8
С	0.97	5	40	3.63	96.9	16.5
L	0.97	5	12	4.6	77	1.9

Reducing gradient saves RF(\$)!

• Work is in progress on designing distributed coupling structures. TW – backup.

Ref: S. Tantawi et al. PRAB, 23, 092001 (2020)

HG Cavity Thermal-Stress Analysis

 Preliminary thermal-stress analysis was performed for S-band cavity. Nominal frequency *f* = 2817.5 MHz (L: 1408.75 MHz; C: 5635 MHz)

Thermal-structural analysis of S-band cavity for β =0.84: temperature distribution and deformation after 50-µs pulse.

HG pRad Booster – RF power

Booster	<i>L</i> , m	E _s , MV/m	P _S , GW	<i>E</i> _c , MV/m	<i>P</i> _c , GW	
Design 1	92.5	36	0.42	100	1.9	IPAC21
Design 2	156.5	25	0.3	40	0.75	NAPAC

Total peak RF power estimates (room temperature operation)

<u>Cryo-cooled operation (LN₂) can reduce the RF power by factor 2-3 and is well suited</u> for pRad booster: < 50- μ s single RF pulse, a few events per day. If some nitrogen is evaporated due to structure heating (we estimated this fraction below 10⁻³, even after full 50- μ s pulse); if needed, it can be refilled before the next event. <u>Cool</u>!

- High-peak-power klystrons (>20 MW) with a variable pulse length 2-50 µs at very low duty factor (single pulse) are feasible but require development. Available S- and C-band klystrons produce up to 50-MW peak with pulses 1-3 µs and rep rates ~100 Hz. Multi-beam L-band (1.3 GHz) klystrons at DESY produce 10-MW peak with 1.5ms pulse at 10 Hz.
- Modulators for such klystrons will also need development.

Test cavity with distributed coupling

C-band 2-cell π -mode test cavity for β = 0.93 (1.6-GeV protons): (a) inner vacuum volume with standard WG187 port (red); (b) vertical cross section.

- The test cavity was designed for 5.712 GHz (not 5.635 GHz), to be tested at the existing LANL C-band RF test stand: 50-MW klystron with <1 µs pulse at 100 Hz.
- Simplified cell shape no noses (not efficient for large beam apertures: *a* = 6.5 mm, *r* = 21.9 mm; *a*/*r* = 0.3); reduces *E*_{max} by 37%.
- Large RF couplers: each delivers one-half of the RF power fed into waveguide.

Test cavity with distributed coupling – parameters

Comparison of two cavity types. f = 5.712 GHz; ideal Cu; $E_0T = 80$ MV/m

Re-entrant cavity, A	EM quantity, unit	Simple cavity, B
0.7429	Т	0.7346
12,746	Q_0	13,150
10,764	Q _{ext}	11,006
3.98	<i>P</i> , MW	4.37
3.67	$E_{\rm max}$ / E_0T	2.32
2.10	$Z_0 H_{\rm max}$ / $E_0 T$	2.29
78.6	Z′ _{eff} , MΩ/m	71.4
81.5	<i>P'</i> , MW/m	89.6

Fields and power flow in the test cavity

CST calculated fields and power in the test cavity

Structure with distributed RF coupling – one period

$$\begin{split} L_c &= \beta \lambda / 2; \quad \lambda = c / f \text{ - free-space wavelength} \\ \frac{\lambda_g / 2 = 2L_c = \beta \lambda \text{ - to excite } \pi \text{-mode & ensure periodicity} \\ \text{Waveguide wavelength } \lambda_g &= \lambda / \sqrt{1 - (\lambda / \lambda_c)^2} \quad \Rightarrow \\ \frac{\lambda}{\lambda_c} &= \sqrt{1 - \frac{1}{4\beta^2}} - \text{only possible for } \frac{\beta > 1/2}{2}. \\ \text{Since } \lambda_c &= 2w, \quad w = \lambda / \sqrt{4 - \beta^{-2}} \quad \text{- defines the WG width.} \end{split}$$

WG width *w* changes with β

WG width *w* is chosen to feed the π -mode and to match the structure and WG periods

C-band test cavity: CAD model and machined half-structure (picture top right)

Summary

- A high-gradient (HG) booster linac for enhanced proton radiography (pRad) at LANSCE is designed to increase the beam energy from 800 MeV to 3 GeV. It is a unique application of HG normal-conducting cavities for protons made possible by pRad requirements of very short beam pulses at low duty.
- We continue development of high-gradient structures for the pRad booster. Our focus is on standing-wave π -mode S- and C-band structures with distributed RF coupling adapted for protons with β = 0.84-0.97 (beam energy from 800 MeV to 3 GeV).
- A short 2-cell C-band test cavity for β = 0.93 with distributed coupling was designed for frequency 5.712 GHz. The cavity is fabricated and delivered to LANL, and it will be tested soon at the LANL C-band RF test stand.

This work is supported by the LANL LDRD program

