

This work has received funding from the European Union's Horizon 2020 Research and Innovation programme under GA No 101004730. This work has received funding from the European Union's Horizon Europe research and innovation programme under grant agreement No. 101079773

European Roadmap Reports for Advanced Accelerators

Ralph Assmann, DESY and INFN, & **Edda Gschwendtner**, CERN

thanks to European expert panel members, co-conveners Snowmass, Eric Esarey (LBNL), Massimo Ferrario (INFN), Carsten Welsch (Liverpool), Vladimir Shiltsev (FNAL), Andrei Seryi (JLAB), Frank Zimmermann (CERN), Rasmus Ischebeck (PSI), ...

AAC 2022, Hauppauge, New York, USA

8 Nov 2022

Innovation Fostering in Accelerator Science and Technology (I.FAST)

I.FAST is coordinated by CERN and aims to **enhance innovation in the particle accelerator community**, mapping out and facilitating the development of breakthrough technologies common to multiple accelerator platforms. The project involves **49 partners, including 17 companies** as co-innovation partners, to explore new alternative accelerator concepts and advanced prototyping of key technologies.

WP6 – Novel Particle	
Accelerators Concepts	
and Technologies	

Includes **EAAC** organization & **strategic** discussions

WP coord: R. Assmann

 Task 1 (RA + M. Ferrario): 	Novel Particle Accelerators Concepts and Technologies (NPACT – <u>EuroNNAc4</u>)
	Sub-task leaders: B. Holzer (CERN), P. Nghie (CEA), A. Specka (CNRS), R. Walczak (Oxford)
• Task 2 (Leo Gizzi):	Lasers for Plasma Acceleration (LASPLA)
 Task 3 (Cedric Thaury): 	Multi-scale Innovative targets for laser-plasma accelerators (MILPAT)
• Task 4 (Francois Mathieu):	Laser focal Spot Stabilization Systems

New Eur. Roadmap Reports

Yellow Report CERN-2022-001

"European Strategy for Particle Physics – Accelerator R&D Roadmap"

270 pages total, considering "High field magents", " High-gradient RF structures and systems", "Bright muon beams and muon colliders", "Energyrecovery linacs"

AND

"High-gradient plasma and laser accelerators", which have 54 pages

First accelerator project since 2016 (then Hi-Lumi-LHC):

EuPRAXIA plasma accelerator project

ESFRI projects are selected on European importance and shall be constructed wthin 10 years

New Eur. Roadmap Reports

Yellow Report CERN-2022-001

"European Strategy for Particle Physics – Accelerator R&D Roadmap"

270 pages total, considering "High field magents", " High-gradient RF structures and systems", "Bright muon beams and muon colliders", "Energyrecovery linacs"

AND

"High-gradient plasma and laser accelerators", which have 54 pages

First accelerator project since 2016 (then Hi-Lumi-LHC):

EuPRAXIA plasma accelerator project

ESFRI projects are selected on European importance and shall be constructed wthin 10 years

European Strategy for Particle Physics

- The European Strategy for Particle Physics is updated every 5 years in a procedure based on wide community input.
- Many of us provided input to this process:
 - Written statements from European Network for Novel Accelerators (EuroNNAc), AWAKE, ALEGRO and EuPRAXIA.
- Strategy defines future directions and priorities for particle physics in Europe and for CERN. Last update: <u>2020</u>.
- Outcome a great success for advanced accelerators:
 - Importance of accelerator R&D in general.
 - Explicit mentioning of plasma and laser high gradient acceleration.
 - Request for accelerator R&D roadmap, adequate resources, priorities, deliverables for next decade, synergy with other science fields, ...

R. Assmann & E. Gschwendtner, AAC 2022

High-priority future initiatives

5

Expert Panel: European Particle Physics Roadmap for High-Gradient Novel Accelerators

Expert Panel – Panel chairs: Chair: Ralph Assmann (DESY/INFN) Deputy Chair: Edda Gschwendtner (CERN)

Panel members:

Kevin Cassou (IN2P3/IJCLab), Sebastien Corde (IP Paris), Laura Corner (Liverpool), Brigitte Cros (CNRS UPSay), Massimo Ferarrio (INFN), Simon Hooker (Oxford), Rasmus Ischebeck (PSI), Andrea Latina (CERN), Olle Lundh (Lund), Patric Muggli (MPI Munich), Phi Nghiem (CEA/IRFU), Jens Osterhoff (DESY), Tor Raubenheimer (SLAC), Arnd Specka (IN2PR/LLR), Jorge Vieira (IST), Matthew Wing (UCL).

Panel associated members:

Cameron Geddes (LBNL), Mark Hogan (SLAC), Wei Lu (Tsinghua U.), Pietro Musumeci (UCLA)

Work performed: **Jan 2021 – Feb 2022** Final report: Yellow Report CERN-2022-001

Can we Shrink the Linear Collider?

Provide e- and e+ beams in the TeV energy regime and produce > 10³⁴ cm⁻² s⁻¹ luminosity

FAST

Table 1.3: Required parameters for a linear collider with advanced high gradient acceleration. Three published parameter cases are listed. Case 1 (PWFA) is a plasma-based scheme based on SRF electron beam drivers [88]. Case 2 (LWFA) is a plasma-based scheme based on laser drivers [89]. Case 3 (DLA) is a dielectric-based scheme [34].

Parameter	Unit	PWFA	LWFA	DLA
Bunch charge	nC	1.6	0.64	4.8×10^{-6}
Number of bunches per train	-	1	1	159
Repetition rate of train	kHz	15	15	20,000
Convoluted normalized emittance $(\gamma \sqrt{\epsilon_h \epsilon_v})$	nm-rad	592	100	0.1
Beam power at 5 GeV	kW	120	48	76
Beam power at 190 GeV	kW	4,560	1,824	2,900
Beam power at 1 TeV	kW	24,000	9,600	15,264
Relative energy spread	%		≤0.35	1
Polarization	%		80 (for e	-)
Efficiency wall-plug to beam (includes drivers)	%		≥ 10	
Luminosity regime (simple scaled calculation)	$10^{34} \mathrm{cm}^{-2} \mathrm{s}^{-1}$	1.1	1.0	1.9

- No fundamental show-stopper but a lot of R&D still required.
- There can be very interesting and useful interim steps (non-linear QED, fixed target, dark matter, ...)
- Devil is in the details! Answer requires detailed simulation, calculations, R&D, designs and tests!

Required Target Parameters

Provide e- and e+ beams in the TeV energy regime and produce > 10³⁴ cm⁻² s⁻¹ luminosity

Parameter	Unit	PWFA	LWFA	DLA
Bunch charge	nC	1.6	0.64	4.8×10^{-6}
Number of bunches per train		1	1	159
Repetition rate of train	kHz	15	15	20,000
Convoluted normalized emittance $(\gamma \sqrt{\epsilon_h \epsilon_v})$	nm-rad	592	100	0.1
Beam power at 5 GeV	kW	120	48	76
Beam power at 190 GeV	kW	4,560	1,824	2,900
Beam power at 1 TeV	kW	24,000	9,600	15,264
Relative energy spread	%		≤0.35	
Polarization	%		80 (for e	_)
Efficiency wall-plug to beam (includes drivers)	%		>10	
Luminosity regime (simple scaled calculation)	$10^{34} \text{cm}^{-2} \text{s}^{-1}$	1.1	1.0	1.9

from expert panel report

The Steps Towards an Advanced Collider

See expert panel report on European Accelerator R&D for Particle Physics

	2021–2025	2026	2027	2028	2029	2030	2031	2032	2033 2034	2035	2036	2037	2038	2039	2040	2041	2042	2043	2044	2045	2046	2047	2048	2049
Feasibility and pre-CDR on advanced accelerators																								
Definition of particle physics case																								
Selection of technology base for a CDR																								
CDR for an advanced collider																								
TDR, prototyping and preparation phase																								
Dedicated test facility: construction, operation																								
Decision on construction (in view of results and other collider projects)	*																							
Construction of advanced collider																						1		

Three Pillars of Plasma R&D Roadmap

See expert panel report on European Accelerator R&D for Particle Physics

FEASIBILITY, PRE-CDR STUDY

Scope: 1st international, coordinated study for self-consistent analysis of novel technologies and their particle physics reach, intermediate HEP steps, collider feasibility, performance, quantitative cost-size-benefit analysis

Concept: Comparative paper study (main concepts included)

Milestones: Report high energy e⁻ and e⁺ linac module case studies, report physics case(s) *Deliverable*: Feasibility and pre-CDR report in 2025 for European, national decision makers

TECHNICAL DEMONSTRATION

Scope: Demonstration of critical feasibility parameters for e⁺e⁻ collider and 1st HEP applications

Concept: Prioritised list of R&D that can be performed at existing, planned R&D infrastructures in national, European, international landscape

Milestones: High-rep rate plasma module, high-efficiency module with high beam quality, scaling of DLA/THz accelerators

Deliverable: Technical readiness level (TRL) report in 2025 for European, national decision makers

INTEGRATION & OUTREACH

Synergy and Integration: Benefits for and synergy with other science fields (e.g. structural biology, materials, lasers, health) and projects (e.g. EuPRAXIA, ...)

Access: Establishing framework for well-defined access to distributed accelerator R&D landscape

Innovation: Compact accelerator and laser technology spin-offs and synergies with industry

Training: Involvement and education of next generation engineers and scientists

Case Study: High Energy Accelerator Module e⁻ & e⁺

Table 4.2: Specification for an advanced high energy accelerator module, compatible with CLIC [87].

 Additional CLIC design values are listed for reference in the second part of the table.

Parameter	Unit	Specification
Beam energy (entry into module)	GeV	175
Beam energy (exit from module)	GeV	190
Number of accelerating structures in module	-	≥ 2
Efficiency wall-plug to beam (includes drivers)	%	≥ 10
Bunch charge	pC	833
Relative energy spread (entry/exit)	%	\leq 0.35
Bunch length (entry/exit)	μm	\leq 70
Convoluted normalised emittance $(\gamma \sqrt{\epsilon_h \epsilon_v})$	nm	\leq 135
Emittance growth budget	nm	\leq 3.5
Polarisation	%	$80 (for e^{-})$
Normalised emittance h/v (exit)	nm	900/20
Bunch separation	ns	0.5
Number of bunches per train	-	352
Repetition rate of train	Hz	50
Beamline length (175 to 190 GeV)	m	250
Efficiency: wall-plug to drive beam	%	58
Efficiency: drive beam to main beam	%	22
Luminosity	$10^{34} { m cm}^{-2} { m s}^{-1}$	1.5

Acceleration module:

- Take high quality beam at 175 GeV from the upstream accelerator
- 2. Accelerator by 15 GeV electrons or positrons
- Deliver high quality beam at 190 GeV to next module

Should be demonstrated in simulation – guides selection of technology

Low Energy Particle Physics Cases Specified

Table 4.3: Specification for an electron beam for fixed-target (FT) experiments, generated by a dielectric laser accelerator (inspired by the eSPS specifications [88]) as well as for electron bunches from plasma accelerators for PEPIC [91–93], a low-luminosity LHeC-like collider [89] and for the LUXE experiment [90]. Such bunches (for PEPIC and LUXE) can also be used for a beam-dump experiment to search for dark photons. Note that the number of bunches per train in the European XFEL is 2700, but for LUXE only one is used.

Parameter	Unit	single e FT	PEPIC	LUXE	
Bunch charge	pC	few e	800	250	
Final energy	GeV	20	70	16.5	
Relative energy spread	%	<1	2 - 3	0.1	
Bunch length	μm	-	30	30-50	
Normalised emittance	μm	100	10	1.4	
Number of bunches per train	-	1	320	1	
Repetition rate	-	1 GHz	0.025 Hz	10 Hz	from expert
Luminosity	$10^{27}{ m cm}^{-2}~{ m s}^{-1}$	-	1.5	-	panel repor

The Advanced Accelerator R&D Project Plan

See expert panel report on European Accelerator R&D for Particle Physics

1200 kCHF

30 FTEy

10 FTEy

800 kCHF

500 kCHF

350 kCHF

16 FTEy

16 FTEy

Table 4.4: Work packages and tasks in the minimal plan.

Experimental demonstration: High-Repetition Rate Plasma

Electron-Driven Plasma Accelerator Module with High beam

Experimental demonstration: High-Efficiency,

Experimental demonstration: Scaling of DLA/THz

Experimental demonstration: Spin-Polarised Beams in

Liaison to Ongoing Advanced Accelerator Projects,

Accelerator Module

Plasma Accelerators

Facilities, Other Science Fields

Quality

Accelerators

							-
WP	Task	Short description	Invest	DEL3.1	12/25	High-Repetition	Demonstrates: at least 1 kHz characterised; robust lifetime
			Personnel			Rate Plasma	$(> 10^9$ shots); only the plasma cell; without full repetition
COOR		Coordination Plasma and Laser Accelerators for Particle	-			Accelerator	rate beam test but including cooling and power handling
		Physics				Module	assessment. Long-term goal: 15 kHz repetition rate.
FEAS		Feasibility and pre-CDR Study on Plasma and Laser	300 kCHF	DEL4.1	12/25	High-Efficiency,	Beam demonstration of high efficiency PWFA module.
	FEAS.1	Coordination	75TTEy			Electron-Driven	40% transfer efficiency from driver beam stored energy to
	FEAS.2	Plasma Theory and Numerical Tools				Plasma Accelerator	witness beam stored energy
	FEAS.3	Accelerator Design, Layout and Costing				Module with High	
	FEAS.4	Electron Beam Performance Reach of Advanced				Beam Quality	
		Technologies (Simulation Results - Comparisons)		DEL 51	12/25	Scaling of	Staged dialectric laser or THz accelerator with 10 MeV an
	FEAS.5	Positron Beam Performance Reach of Advanced		DELJ.I	12/25	Scaling of	Staged dielectric faser of THZ accelerator with To Mev en-
		Technologies (Simulation Results - Comparisons)				DLA/THz	ergy gain, transverse and longitudinal focusing and at least
	FEAS.6	Spin Polarisation Reach with Advanced Accelerators				Accelerators	two stages. Long-term goal: Massively scale-able design
	FEAS.7	Collider Interaction Point Issues and Opportunities with					printed on a chip.
	FEAGO	Advanced Accelerators		DEL6.1	12/25	Spin-Polarised	Demonstration of polarised electron beams from plasma
	FEA5.8	Accelerators				Beams in Plasma	with 10-20% polarisation fraction. Long-term goal: Polar-
	FEAS.9	Intermediate steps, early particle physics experiments and test facilities				Accelerators	isation 85%.
	FEAS.10) Study WG: Particle Physics with Advanced Accelerators		Tech	nica	I deliverable	es (above) point to high priority

Technical deliverables (above) point to high priority activities: high repetition rate, efficiency (power), scaling to high energy, spin polarization, ...

Next step: Implementation & secure some funding for the particle physics R&D project

HRRP

HEFP

DLTA

SPIN

LIAI

Resources Minimal Plan Advanced Acc. R&D

Table 4.6: Integrated resources for the minimal plan. Committed funds in the LIAI work package relate to funding in relevant ongoing projects and facilities (see Tables 4.9, 4.10 and 4.11)

WP	Task i	ntegrated	resources	In-kind contributions	Committed funds
	FTEy	MCHF	G-core-h	FTEy	MCHF
COOR	0	0	0	2.5	0
FEAS	75	0.3	1.6	75	0
HRRP	30	1.2	0	3	0
HEFP	10	0.8	0	1	0
DLTA	16	0.5	0	2	0
SPIN	16	0.35	0	2	0
LIAI	0	0	0	2.5	~ 280
Sum	147	3.15	1.6	88	~ 280

Minimal plan would be around 25 MCHF project, mainly focused on the feasibility study FEAS. Note: High European funding in liaison projects LIAI \rightarrow about 280 MCHF

Next : Implementation of Accelerator R&D Roadmap for Particle Physics

- Process again guided by Lab Director's Group (LDG) in Europe
- Previous panels had completed their work and mandates. Partially new structures being set up.
- Advanced accelerator implementation effort led by Wim Leemans (DESY) with Rajeev Pattahil (STFC) as deputy. Wim Leeman's message on update slides: "Regarding the European Roadmap strategy effort for plasma accelerators that I am chairing: too early as we are still forming the team and exploring ways to secure funding. Hopefully in the months to come."
- However, parts of our strategy being implemented through approved projects (see AWAKE slides next) and roadmaps in fields mainly outside of Particle Physics (see ESFRI/EuPRAXIA slides later) → see committed resources in proposed WP LIAI listed before...

→Has developed a clear scientific roadmap towards first particle physics applications within the next decade !

➔In AWAKE many general issues are studied, which are relevant for concepts that are based on plasma wakefield acceleration.

Paradigm change:

➔ Move from 'acceleration R&D' to an 'accelerator'

AWAKE at CERN

Advanced WAKEfield Experiment: Proof-of-Principle Accelerator R&D experiment at CERN to study proton driven plasma wakefield acceleration. Collaboration of 23 institutes world-wide.

AWAKE Run 1 (2016-2018):

- \checkmark 1st milestone: Demonstrated seeded self-modulation of the proton bunch in plasma (2016/17)
- ✓ 2nd milestone: Demonstrated electron acceleration in plasma wakefield driven by a self-modulated proton bunch. (2018)

AWAKE Run 2 (2021 – ~2030):

Accelerate an electron beam to high energies (gradient of 0.5-1GV/m) while preserving the electron beam quality and demonstrate scalable plasma source technology.

Once AWAKE Run 2 demonstrated: First application of the AWAKE-like technology: Particle physics experiments for e.g. dark photon search.

AWAK

AWAKE Run 1 (2016 – 2018): Proof-of-Concept Demonstrated

(b) (E)

 $\Delta \Phi$ (%/2

npe / 10¹⁴ cm⁻³

AWAKE

CÉRN

AWAKE Run 2 (2021 – 2030): Towards an Accelerator

- ✓ Run 2a: demonstrate the seeding of the self-modulation of the entire proton bunch with an electron bunch
- Run 2b: maintain large wakefield amplitudes over long plasma distances by introducing a step in the plasma density
- Run 2c: demonstrate electron acceleration and emittance preservation of externally injected electrons.
- Run 2d: development of scalable plasma sources to 100s meters length with sub-% level plasma density uniformity.
- → Propose first applications for particle physics experiments with 50-200 GeV electron bunches!

CÉRN

A WAKE

Particle Physics Applications with AWAKE-Like Technology

Many opportunities for first particle physics applications in the nearer future:

- → Beam quality sufficient for **fixed target experiments**
- → Currently for O(100) GeV electrons by scattering SPS protons on a target: inefficient and very low yield
- → Beam Dump Experiment: Search for dark photons.
- \rightarrow Decay of dark photon into visible particles (e.g. e+/e-)

→ Extension of mixing strength of the kinematic coverage for 50 GeV electrons and even more for 1 TeV electrons

- → Investigate non-linear QED in electron- photon collisions.
- → Produce TeV-range electrons with an LHC p+bunch: use for lower luminosity measurements in electron-proton or electron-ion collisions.
 - $\mathcal L$ Limited by proton accelerator repetition rate look for high-cross-section processes to compensate.

New Eur. Roadmap Reports

Yellow Report CERN-2022-001

"European Strategy for Particle Physics – Accelerator R&D Roadmap"

270 pages total, considering "High field magents", " High-gradient RF structures and systems", "Bright muon beams and muon colliders", "Energyrecovery linacs"

AND

"High-gradient plasma and laser accelerators", which have 54 pages

First accelerator project since 2016 (then Hi-Lumi-LHC):

EuPRAXIA plasma accelerator project

ESFRI projects are selected on European importance and shall be constructed wthin 10 years

ESFRI Roadmap Update December 2021

The

CHALLENGES AND Strategy for the

- E uropean
- **S** trategy
- F orum on
- R esearch I nfrastructures
- https://roadmap2021.esfri.eu
- Roadmap projects selected after thorough review by ESFRI committee and approved by **EU** governments every few years
- 2006 2008 2012 2016 2018 - **2021**

EuPRAXIA facility rendering picture

ESFRI Landmarks Roadmap 2021

(Physical Sciences & Engineering)

PHYSICAL SCIENCES & ENGINEERING

NAME	FULL NAME	TYPE	LEGAL Status (y)	ROADMAP Entry (Y)	OPERATION Start (Y)	INVESTMENT Cost (M€)	OPERATION Cost (M€/Y)
СТА	Cherenkov Telescope Array	single-sited	gGmbH, 2014	2008	2024*	400.0	20.0
ELI ERIC	Extreme Light Infrastructure	single-sited	ERIC, 2021	2006	2018	850.0	80.0
ELT	Extremely Large Telescope	single-sited	ESO#	2006	2027*	1,309.0	48.0
EMFL	European Magnetic Field Laboratory	distributed	AISBL, 2015	2008	2014	170.0	20.0
ESRF EBS	European Synchrotron Radiation Facility Extremely Brilliant Source	single-sited	ESRF#	2016	2020	128.0	82.0
European Spallation Source ERIC	European Spallation Source	single-sited	ERIC, 2015	2006	2026*	3,009.0	140.0
European XFEL	European X-Ray Free-Electron Laser Facility	single-sited	European XFEL#	2006	2017	1,540.0	137.0
FAIR	Facility for Antiproton and Ion Research	single-sited	GmbH, 2010	2006	2025*	NA	NA
HL-LHC	High-Luminosity Large Hadron Collider	single-sited	CERN#	2016	2027*	1,408.0	136.0
ILL	Institut Max von Laue - Paul Langevin	single-sited	ILL#	2006	2012	188.0	100.0
SKAO	Square Kilometre Array Observatory	single-sited	SKAO, 2011	2006	2027*	1,986.0	77.0
SPIRAL2	Système de Production d'Ions Radioactifs en Ligne de 2e génération	single-sited	GANIL	2006	2019	307.3	5.2

https://roadmap2021.esfri.eu

ESFRI LANDMARKS 💿

PAG 19

https://roadmap2021.esfri.eu

ESFRI PROJECTS

	NAME	FULL NAME	TYPE LEGAL Status (y)	ROADMAP Entry (Y)	OPERATION Start (y)	INVESTMENT (Cost (M€) co	operation Ist (M€/Y)
ŊĠ	EST	European Solar Telescope	single-sited	2016	2029*	200.0	12.0
8	ET	Einstein Telescope	single-sited	2021	2035*	1,912.0	37.0
IGINE	EuPRAXIA	European Plasma Research Accelerator with Excellence in Applications	distributed	2021	2028*	569.0	30.0
PHYSICAL SCIENCES & EN	KM3NeT 2.0	 KM3 Neutrino Telescope 2.0 Two new entrie EuPRAXIA is the EuPRAXIA is the 	distributed s in 2021: Einstein Telescope (E e only accelerator facility selecte e first plasma accelerator facility	2016 E T) and ed in th y ever i	2020 EuPRA ne last (nclude	196.0 XIA 6 years d	3.0

- Two new entries in 2021: Einstein Telescope (ET) and EuPRAXIA •
- EuPRAXIA is the only accelerator facility selected in the last 6 years •
- EuPRAXIA is the first plasma accelerator facility ever included •

PHYSICAL SCIENCES & ENGINEERING

What is **EuPRAXIA About**?

Building a facility with very high field plasma accelerators, driven by lasers or beams 1 – 100 GV/m accelerating field

Shrink down the facility size

The European Physical Journal volume 220 - number 24 - December EPDI ST Theogeneed by European Physical Society Special Toppics

EuPRAXIA Conceptual Design Report Rajh Assmann and Maria Weikum (Eds.)

2020 Publication of Conceptual Design Report 600+ page CDR, 240 scientists contributed EUROPEAN PLASMA RESEARCH ACCELERATOR WITH EXCELLENCE IN APPLICATIONS

EuPRAXIA Facility Size: COMPACT

500 m

- Distributed
 - **2** Construction Sites
 - Several Excellence Centers
 - **IMPORTANT: EuPRAXIA** design includes innovative concepts & solutions but also lab space, RF injectors, transfer lines,

(the **real space** needed)

750 m

250 m

0 m

R. Assmann & E. Gschwendtner, AAC 2022

What is **EuPRAXIA About**?

Building a facility with very high field plasma accelerators, driven by lasers or beams 1 – 100 GV/m accelerating field

Shrink down the facility size

Producing particle and photon pulses to support several urgent and timely science cases

Enable frontier science in new regions and parameter regimes

European Plasma Research Accelerator with eXcellence In Applications

Versatile – Designed for Users in Multiple Science Fields

Topics of research: proteins, viruses, bacteria, cells, metals, semiconductors, superconductors, magnetic materials, organic molecules

Delivers 10-100 Hz **ultrashort** pulses

- Electrons (0.1-5 GeV, 30 pC)
- **Positrons** (0.5-10 MeV, 10⁶)
- Positrons (GeV source)
- Lasers

 (100 J, 50 fs, 10-100 Hz)
- Betatron X rays (1-110 keV, 10¹⁰)
- FEL light (0.2-36 nm, 10⁹-10¹³)

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 653782.

phases are indicated in lighter shades

σ Čt

EuPRAXIA Project Overview & Funding Lines

Activity	Resources	Origin	2015	2016	2017 2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028																							
Headquarter Hamburg/DESY	0€	In-kind DESY																																				
Headquarter Frascati INFN-LNF	0€	In-kind INFN and DESY																																				
EuPRAXIA Legal Structure of		Defined in Preparatory	Leaders	hip & coor	dination																																	
European RI		Phase												1																								
Conceptual Design Project	6.000.000€	EU + in-kind (included here)					CDR	EPJ publ of CDR	ication																													
Application ESFRI Roadmap, Funding applications	0€	In-kind DESY, INFN and EuPRAXIA consortium			Decision	n s	o project fundi upport by comr	ng, in-kind nunity																														
ESFRI Consortium					Electron-Driver				ESFRI Cons	ortium (merge	with PP)				l																							
Preparatory Phase Project	8.310.000€	EU, UK,Switzerland + in- kind (included here)				Consortium Work	Consortium Work	Consortium Work	Consortium Work	Consortium Work	Consortium Work	Consortium Work	Consortium Work	Consortium Work	Consortium Work	Consortium Work	Site: INFN-LNF			ESF	RI					Full imple tation pla	men- n											
EuPRAXIA Doctoral Network	2.600.000€	EU	Consort	Consortium Work	Consortium Work												Consortium Work	Consortium Work	Consortium Work	Consortium Work	Consortium Work	Consortium Work	Consortium Work	Consortium Work	Consortium Work	Consortium Work	Consortium Work											
CREATE (includes EuPRAXIA R&D) - proposed - reserve list	15.000.000€	EU INFRATECH												1	5	777777 7777777	???????????????????????????????????????	???????																				
CNRS project PALLAS (letter J.L. Biarrotte 30.3.2021)	1.670.000€	CNRS France																																				
EuPRAXIA Construction in Frascati LNF-INFN (EUPRAXIA@SPARCIab)	108.000.000€	Italian government invest (plus personnel)							l																													
Local EuPRAXIA support projects	7.000.000€	Regional Lazio funding	Construction Site	Construction Site	Construction Site	Construction Site	Construction Site	Construction Site	Construction Site	Construction Site I	Construction Site	Construction Site	Construction Site F	Construction Site F	Construction Site F	Construction Site I	Construction Site	Construction Site	Construction Site	Construction Site F	Construction Site F	Construction Site F	Construction Site F	Frascati														
Confinancing Regional Funds, preparation building project	7.000.000€	INFN direct funds																																				
EuPRAXIA Advanced Photon Source (EuAPS)	22.000.000€	PNRR (EU/Italian recovery funding)																																				
EuPRAXIA beamline support - in discussion	10.000.000€	Regional Lazio funding									???	???????????????????????????????????????	???????????????????????????????????????	?????																								
Site 2 (laser site) implementation		Defined in Preparatory Phase	Laser Co	onstructio	n Site				1	Decision L	aser-Site	????	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	•????																							
Total (available) Total (applied)	162.580.000 € 25.000.000 €	162.6 M€	resou	rces a	pproved, 25	M€ ap	olied fo	r	Toda	У																												

Phased Implementation of Construction Sites

Laser

RF Injector

Plasma

Accelerator

Undulator Undulator

Beamline LB-A: FEL

1: INFN-LNF construction funding 108 M€

2: INFN/CNR/TorVer demo facility 22 M€ (PNRR)

FEL user area 1

FEL user area 2

EuPRAXIA-PP (Preparatory Phase) Key Facts

Prepares the implementation of the full RI in Europe

- Total project volume (including in-kind): 8.3 M€
 - EU funding: **2.49 M€** (EU without in-kind)
 - Outside EU
 0.69 M€ (Switzerland)
 0.51 M€ (UK)
- Work organized in 16 Work Packages
- Project dates: **1 Nov 2022 31 Oct 2026**
- Coordinator and location of headquarters: **INFN**
- **34** participating organizations from 12 countries
- Will establish a "Board of Financial Sponsors" with representatives of funding agencies.
- So far ~ 25% of total M&P funding (569 M€) secured. Site 1 is essentially financed

E<u>u</u>**PRA**

EuPRAXIA-Preparatory Phase Consortium

34 Institutes from 12 Countries \rightarrow to be merged with ESFRI Consortium

Complemented by institutes in **EuPRAXIA ESFRI consortium: additional 17 institutes** from France, Germany, Poland, Sweden, United Kingdom, China, Japan, United States. Russian institutes presently suspended.

Governing Board

PP Steering Committee: Leaders Behind EuPRAXIA

(Decision-making body) R. A M. F Steering Committee WP2 Rela Scientific Advisory Board WP3 A. S Industrial Advisory Board WP3 A. S Board Board Board Board Board A. S Board Board

Sponsors

WP1 - Coordination & Project Management R. Assmann, INFN & DESY M. Ferrario, INFN WP2 - Dissemination and Public Relations C. Welsch, U Liverpool S. Bertellii, INFN WP3 - Organization and Rules A. Specka, CNRS A. Ghigo, INFN WP4 - Financial & Legal Model. **Economic Impact** A. Falone, INFN **WP5 - User Strategy and Services** F. Stellato, U Tor Vergata E. Principi, ELETTRA **WP6 - Membership Extension** Industry Strategy B. Cros, CNRS A. Mostacci, U Sapienza

WP7 - E-Needs and Data Policy R. Fonseca, IST S. Pioli, INFN WP8 - Theory & Simulation J. Vieria, IST H. Vincenti, CEA WP9 - RF, Magnets & Beamline Components S. Antipov, DESY F. Nguyen, ENEA WP10 - Plasma Components & **Systems** K. Cassou, CNRS J. Osterhoff, DESY WP11 - Applications G. Sarri, U Belfast E. Chiadroni, U Sapienza WP12 - Laser Technology, Liaison to L. Gizzi, CNR P. Crump, FBH

WP13 - Diagnostics A. Cianchi, U Tor Vergata R. Ischebeck, EPFL

WP14 - Transformative Innovation Paths

B. Hidding, U Strathclyde S. Karsch, LMU

WP15 - TDR EuPRAXIA @SPARC-lab

C. Vaccarezza, INFN R. Pompili, INFN

WP16 - TDR EuPRAXIA Site 2

A. Molodozhentsev, ELI-Beamlines R. Pattahil, STFC

WP's on coordination & implementation as ESFRI RI (organization, legal model, financing, users)

WPs on technical implementation and sites

Headquarter and Site 1: EuPRAXIA@SPARClab

- Frascati's future facility
- > 130 M€ invest funding
- Beam-driven plasma accelerator
- Europe`s most compact and most southern FEL
- The world`s most compact RF accelerator (X band with CERN)

It Fits the Frascati Site

(also fits sites at a large university, hospital, company, ...)

Vladimir Shiltsev, Fermilab National Laboratory, USA

Selection Laser Site: Candidates from CDR

Visit to ELI-Beamlines (13 - 14 Oct 2022)

Data Rate and Networking Capacity

(numbers refer to maximum rate operation at 100 Hz)

Data Source	Data rate	Data / exp for online analysis	Reduced data / exp for long term storage	Long term storage (reduced data)	Exchange (derived data and meta data)
Modeling and simulations (3D)	300 TB / case	900 TB	1 TB	0.1 PB/y	12 TB/y
Machine monitoring	20 TB / h	2.4 PB	5 TB	0.17 PB/y (A) 0.33 PB/y (B)	20 ТВ/у
End user exp. (e.g. PCO Edge at 8 MB @ 100 Hz)	2.9 TB / h	207 TB	20 TB	0.66 PB /y (A) 1.32 PB/y (B)	100 TB/y
Total				≈ 2.6 PB/y	≈ 132 TB/y

- Networking capacity **10 Gbit/s** sufficient for data rates
- Exists at Frascati (LHC computing needs) and the EuPRAXIA candidate sites benefit of existing sites
- Specified for 1 PB high performance parallel file system (online analysis) and 100 GBE → see E-Infrastructure slide)

Level	Plans for Resource Use		
Institutional	 1 PByte high performance parallel file system 100 GBE network connection on site ~ 8192 cores, 32 TByte main memory for cloud hardware with Infiniband connect 16 GPUs for Machine Learning / fast image analysis Open Source cloud infrastructure (Open Stack + scalable data analytics via e.g. Jupyter Hub, Apache Kafka,) 		
Regional	 Tier 3 centers at universities for offline data analysis and small-scale simulations Tier 2 centers at laboratories for data analysis and capacity simulations 		
National	 Tier 1 and especially Tier 0 systems such as MARCONI LEONARDO, both for full-scale 3D capability simulations but also for high performance data analysis of selected data sets, especially when developing AI surrogate models of the accelerator 		
International	 Build on EuPRAXIA partner links to WLCG and the EGI Federation EuPRAXIA will contribute to and exploit EOSC in its digital infrastructure PRACE (Partnership for Advanced Computing in Europe) for large-scale simulations & AI learning 		

Conclusion

- Advanced accelerators positioned prominently in two recently published roadmaps in Europe: ESPP ARD and ESFRI.
- Roadmaps translate into major European activities ongoing
 - For applied science and accelerator R&D in EuPRAXIA (e- driven and laser driven)
 - For particle physics in AWAKE (p driven plasma acceleration)
 - For particle physics in implementation of European Particle Physics roadmap for accelerator R&D → to be reported by Wim Leemans once defined
- Particle physics is the grand goal but near-term science applications are realistic, timely & important: attracting funding on the path to the collider

Upcoming iFAST sponsored events in Europe

EAAC 2023 17-23 September 2023 in the Elba Island, Italy

iFAST WP5 & WP6

iFAST WP6

AST

Acceleration for Particle Physics

IFAST GR2M GHz Rate and Rapid Muon

Joint mini-workshop of iFAST WP's 5 and 6 Tentative location: Northern Germany Tentative time: during 2023

Laser Electron Beam

Programme committee, unfolding Frank Zimmermann , CERN(co-Chair) Ralph Assmann, DESY (co-Chair) Giuliano Franchetti, GSI Rasmus Ischebeck, PSI Emilio Nanni SLAC – tbc

This project has received funding from the European Union's Horizon 2020 Research and Innovation programme under GA No 101004730.

Outcome for Accelerator R&D

Innovative accelerator technology underpins the physics reach of high-energy Β. and high-intensity colliders. It is also a powerful driver for many accelerator-based fields of science and industry. The technologies under consideration include high-field magnets, high-temperature superconductors, plasma wakefield acceleration and other high-gradient accelerating structures, bright muon beams, energy recovery linacs. The European particle physics community must intensify accelerator R&D and sustain it with adequate resources. A roadmap should prioritise the technology, taking into account synergies with international partners and other communities such as photon and neutron sources, fusion energy and industry. Deliverables for this decade should be defined in a timely fashion and coordinated among CERN and national laboratories and institutes.

