High energy proton acceleration at DRACO-PW and radio-biological applications

Karl Zeil

Helmholtz-Zentrum Dresden-Rossendorf 20th Advanced Accelerator Concepts Workshop (AAC'22) November 7, 2022

HZDR

Development of a high repetition-rate, high energy plasma accelerator for ions

Energy scaling – two challenges:

- 1. Technological limits for larger laser systems:
 - Advanced accelerator schemes: from surface to volumetric interaction
 - ➤ Indirect, highly non-linear processes
 (instabilities) → high sensitivity on input
 parameters

2020 Roadmap on plasma accelerators New Journal of Physics 23, 031101 (2021)

Development of a high repetition-rate, high energy plasma accelerator for ions

Energy scaling – two challenges:

- 1. Technological limits for larger laser systems:
 - Advanced accelerator schemes: from surface
 to volumetric interaction INS
 Indirect, highly non-linear processes
 (instabilities) → high sensitivity on input

parameters

- 2. Limited predictability of simulations
 - microscopic understanding
 - control and knowledge of laser parameters on target

2020 Roadmap on plasma accelerators New Journal of Physics 23, 031101 (2021)

Member of the Helmholtz Association

Laser-driven proton acceleration for radiobiological research

20th Advanced Accelerator Concepts Workshop (AAC'22)

Page 4

Member of the Helmholtz Association Karl Zeil I k.zeil@hzdr.de I www.hzdr.de

Preparation of comparative in vivo radiobiological studies for dose rate effect studies

Radiobiological model & requirements:

- radiobiological endpoint: tumor-growth delay of mouse ear tumor
- irradiated volume Ø 5 mm, 5 mm depth
- 4 Gy < +/- 10%
- homogeneity < 10% dev. dose deposition at 4 Gy (< 10% sample-to-sample variation)
- 2 cohorts (Draco PW & UPTD) with 5 treatment groups each

K. Brüchner et al., Radiat. Onc., Vol. 9 (2014) Animal study approval DD24-5131/338/35

	Draco PW	UPTD
mean dose		3.9
single dose accuracy (2σ)		14%
dose homogeneity lateral/depth (2σ)		9%/2%
mean dose rate		3.6 Gy/min
peak dose rate		-

Member of the Helmholtz Association Karl Zeil | k.zeil@hzdr.de | www.hzdr.de

20th Advanced Accelerator Concepts Workshop (AAC'22)

Page 5

Setup at Draco PW

E_{kin} [MeV]

T. Ziegler *et al.*, Sci Rep 11 (2021); F.-E. Brack *et al.*, Sci Rep 10 (2020), F. Kroll *et al.* Nature Physics (2022) Page 6

Member of the Helmholtz Association Karl Zeil I k.zeil@hzdr.de I www.hzdr.de

20th Advanced Accelerator Concepts Workshop (AAC'22)

Setup at Draco PW

Setup at Draco PW

platform enables single-shot delivery of mm-scale 3D tumor-conform dose distributions making perfect use of the broadband LPA proton spectrum

T. Ziegler et al., Sci Rep 11 (2021); F.-E. Brack et al., Sci Rep 10 (2020), F. Kroll et al. Nature Physics (2022)

Page 8

20th Advanced Accelerator Concepts Workshop (AAC'22)

Member of the Helmholtz Association Karl Zeil I k.zeil@hzdr.de I www.hzdr.de

Accelerator readiness and stability benchmarked via application-specific parameters

Preparation of comparative in vivo radiobiological studies for dose rate effect studies

- model-conform dose delivery
 - ... mitigation of LPA-inherent spectral intensity fluctuations
- accelerator readiness and stability
- ... stable daily accelerator performance over weeks enabling a bio-driven schedule
- radiobiological pilot study
 - ... meaningful dose-effect data via
 - ... on-demand proton LPA source operation
 ... precise dose delivery & dosimetry
 ... complex *in vivo* sample preparation,
 - irradiation & follow-up
- Interesting radiation induced (4 Gy) effect observed, but no significant conclusion because of too small sample number

	Draco PW	UPTD
mean dose	3.9	3.9
single dose accuracy (2σ)	8%	14%
dose homogeneity lateral/depth (2σ)	9%/< 9%	9%/2%
mean dose rate	1.2 – 2.2 Gy/min	3.6 Gy/min
peak dose rate	10 ⁸ Gy/s	-
F Kroll et al Nature Physics 18 3		

Member of the Helmholtz Association

Karl Zeil | k.zeil@hzdr.de | www.hzdr.de

Page 10

20th Advanced Accelerator Concepts Workshop (AAC'22)

Upscaling the energy: Enhanced acceleration with nearcritical density targets

Member of the Helmholtz Association

Relativistic transparency

Yin POP (2011), D'humieres POP (2015), Higginson Nat. Comm. (2018),

Magneto vortex acceleration

²⁰th Advanced Accelerator Concepts Workshop (AAC'22)

Relativistic transparency

Yin POP (2011), D'humieres POP (2015), Higginson Nat. Comm. (2018), McKenna, Gonzales-Izquierdo et al. SPIE (2021) & ApplSci (2018)

Magneto vortex acceleration

Bulanov & Esirkepov PRL (2007)

TNSA

European XFEL Magneto vortex acceleration

Bulanov & Esirkepov PRL (2007)

Relativistic transparency Yin POP (2011), D'humieres POP (2015), Higginson Nat. Comm. (2018),

Page 14 20th Advanced Accelerator Concepts Workshop (AAC'22)

TNSA

Member of the Helmholtz Association

²⁰th Advanced Accelerator Concepts Workshop (AAC'22)

TNSA

Relativistic transparency

Yin POP (2011), D'humieres POP (2015), Higginson Nat. Comm. (2018), McKenna, Gonzales-Izquierdo et al. SPIE (2021) & ApplSci (2018)

Magneto vortex acceleration

Bulanov & Esirkepov PRL (2007)

Karl Zeil | k.zeil@hzdr.de | www.hzdr.de

Enhancing ion energies with relativistically transparent targets

- targets can get relativistic transparent during interaction
 - \rightarrow increase absorption + coupling into ions + energies

Karl Zeil | k.zeil@hzdr.de | www.hzdr.de

Member of the Helmholtz Association

Page 16 20th Advanced Accelerator Concepts Workshop (AAC'22)

Enhancing ion energies with relativistically transparent targets

targets can get relativistically transparent during interaction

 \rightarrow increase absorption + coupling into ions + energies

- enhanced proton energies at optimal thickness
- onset of transparency at optimal thickness
- observation of forward acceleration

Experimental setup

HZDR

Profiler: shift of acceleration direction towards laser axis

• highest energies in forward direction

T. Ziegler, et al. unpublished

Microscopic understanding and robust performance

Characterization of the laser induced breakdown

... precisely measure the threshold intensities at low intensities,

-70

-50

-20

-10

-30

time [ps]

10

We can characterize the start of the interaction at full energy laser shots,

Page <u>20</u>

20th Advanced Accelerator Concepts Workshop (AAC'22)

Member of the Helmholtz Association Karl Zeil I k.zeil@hzdr.de I www.hzdr.de

Microscopic understanding and robust performance

Comparing pre-expanded thin foil studies at two laser systems w/o PM

Coordinated laser and plasma diagnostics provide similar results

Member of the Helmholtz Association

20th Advanced Accelerator Concepts Workshop (AAC'22)

Page 21

Conclusion

- 1. Stable TNSA beam performance enabled first volumetric in-vivo irradiation of mice
- Combining multiple detector systems based on different principles to confirm energies >100 MeV in pre-expanded foils
- 3. High energy, bandwidth limited pulses from rep-rate capable laser system
- 4. Understand and mitigate strong fluctuation is work in progress

Member of the Helmholtz Association

Big Thanks to the Team and Collaborators

Laser radiooncology

Laser particle acceleration

J. Pawelke, E. Beyreuther, K. Brüchner, E. Bodenstein, L. Karsch, E. Lessmann, M. Krause, E. Troost, N. Cordes, C. Richter, et al. K. Zeil, J. Metzkes-Ng, F. Kroll, S. Assenbaum, C. Bernert, F. Brack, E. Beyreuther, L. Gaus, S. Kraft, A. Nossula, M.E.P. Umlandt, M. Rehwald, M. Reimold, M. Vescovi, H.-P. Schlenvoigt, M. Sobiella, T. Ziegler, T. Kluge, I. Goethel, S. Bock, R. Gebhardt, U. Helbig, T. Püschel, U. Schramm, T. Cowan, et al.

High-field laboratory Dresden (HLD) and HZDR workshop; R. Szabo, et al. (ELI-ALPS); J. Jansen, et al. (DKFZ)

- S. Glenzer, C. Curry, M. Gauthier,
- J. Kim, F. Fiuza
- S. Goede et al.

M. Nichiuchi, H. Kyriama, N. Dover, A. Kon

Thank you for your attention!

fuuu

0

20th Advanced Accelerator Concepts Workshop (AAC'22)

Page 24

Member of the Helmholtz Association Karl Zeil I k.zeil@hzdr.de I www.hzdr.de