

Self-injection process in laser-wakefield accelerator driven by CO₂ laser pulses

Arohi Jain, Irina Petrushina, Roman Samulyak, Vladimir Litvinenko, Navid Vafaei-Najafabadi*

Stony Brook University

John P. Palastro, Tanner T. Simpson University of Rochester

Rafal Zgadzaj, Michael Downer

University of Texas at Austin

This work is supported by the following grants: DoE grant DE-SC-0014043 DoE grant DE-SC-0020396 NERSC facility- DE-AC02-5CH11231

AAC 2022

November 8th, 2022

- More efficient LWFA could be realized using long wavelength lasers-
 - For a fixed laser intensity I, lasers with longer wavelengths λ have larger ponderomotive potential ($\propto I\lambda^2$).
 - Stronger wakes can be generated at relatively low laser intensities which helps in ionization-based injection.
- We are trying to extend the work done on self-injection process in CO₂ driven wakes in the previous studies^{1,2}
 - Investigating self-injection threshold
 - Performing PIC simulations for a range of CO₂ laser and plasma parameters using FBPIC³
 - Investigating cases for over matched, matched, and under matched spot sizes
 - Investigate variations of bubble size and shape associated with nonlinear evolution of the driving pulse result in self-injection of background plasma electrons.

[1] P. Kumar et al., Phys. Plasmas 28, 013102 (2021).
[2] E. Brunetti et al., Scientific reports 12, 6703 (2022).
[3] R. Lehe et al., Computer Phys. Comm. 203, 66–82 (2016).

Empirical threshold condition for self-injection

• In case of a non-evolving laser driver, for any given bubble wake velocity γ_0 , self-injection occurs provided that the peak laser field strength is above a threshold, a_0^* ⁴

$$a_0^* \approx 2.75 \left[1 + \left(\frac{\gamma_0}{22} \right)^2 \right]^{1/2}$$

n_e (× 10 ¹⁶ cm ⁻³)	a_0^*
1	3.80
2	3.32
3	3.14
4	3.05
5	2.99

			$a < a_0^*$			$a > a_0^*$	
n_e (× 10 ¹⁶ cm ⁻³)	<i>P_c</i> (TW)	a_0^*	$a_0, w_m(\mu m)$ (w_0 = 90 μm , $P = P_c/2$)	$a_0, w_m(\mu m)$ (w_0) $= 90 \ \mu m,$ $P = P_c)$	$a_0, w_m(\mu m)$ (w_0) $= 90 \ \mu m,$ $P = 2P_c)$	$a_0, w_m(\mu m)$ (w_0 = 90 μm , $P = 2P_c$)	$a_0, w_m(\mu m)$ (w_0 = 90 μm , $P = 3P_c$)
1	23	3.80	2.6, 145	3.67, 173		5.2, 205 (341 pC)	6.37, 227 (916 pC)
2	11.5	3.32	1.84, 87	2.6,103		3.7, 123 (40 pC)	4.5, 135 (330 pC)
3	7.7	3.14	1.5, 64	2.1, 75	3, 90		3.67, 100 (48 pC)
4	5.7	3.05	1.3, 51	1.82,61	2.6, 73		3.16, 80 (25 pC)
5	4.6	2.99	1.16, 43	1.64,52	2.32, 61		2.84, 65 (7pC)

No self-injection Self-injection

Laser spot size w_0 and laser amplitude a_0 evolution

5

Laser spot size w_0 and laser amplitude a_0 evolution

n_e (× 10 ¹⁶ cm ⁻³)	a_0^*
1	3.80
2	3.32
3	3.14
4	3.05
5	2.99

6

4

 $\begin{array}{c}
 & 1 \times 10^{16} cm^{-3} \\
 & 2 \times 10^{16} cm^{-3} \\
 & 3 \times 10^{16} cm^{-3} \\
 & 4 \times 10^{16} cm^{-3} \\
 & 5 \times 10^{16} cm^{-3}
\end{array}$

3

4

2

z (mm)

- $P = 2P_c$ Injection suppresses for a_0 below self-injection threshold (a_0^*)
- Simulation results show good agreement with the empirical formula.

6

5

4

 a_0

Method for calculating bubble velocity β_b , dephasing velocity β_d , and rate of change in bubble length $\partial L_b / \partial z$

Variotion of this point where $E_z = 0$ is used to calculate bubble velocity at the back β_b

Electron energy relation with laser intensity

 Approximate total energy of the electron γ_e scattered by laser pulse derived using integration of the ponderomotive force averaged over the fast oscillatory motion⁵:

Velocity imparted to electrons β_e by laser pulse decreases with laser amplitude $a_0 - a_0 \uparrow \beta_e \uparrow$, $a_0 \downarrow \beta_e \downarrow$ No charge injection - bubble velocity at the back $\beta_b >$ velocity of the electron β_e

* Stony Brook University

[5] M.P. Tooley et al., Phys. Rev. Lett. 110, 135002 (2013). 8

Study of self-injection with same peak power of CO₂ laser pulses for different cases

	n_e (× 10 ¹⁶ cm ⁻³)	<i>P_c</i> (TW)	a ₀ ,w ₀ (μm), P (TW)	$w_m(\mu m)$	a_0^*	Injected charge (nC)
Over matched	7.9	2.9	5.2,90, 46	73	2.90	8.4
Matched	5.2	4.2	5.2,90, 46	90	2.98	3.7
Under matched	1	11.5	5.2,90, 46	205	3.8	0.37

Laser amplitude is above the threshold for self-injection

Evolution of the bubble

* Stony Brook University

- 25 ⁻ 25 - 20 ¹⁰ - 15 ^u

10

Study of self-injection with same peak power of CO₂ laser pulses for different cases

	n_e (× 10 ¹⁶ cm ⁻³)	<i>P_c</i> (TW)	a ₀ , w ₀ (μm), P (TW)	w _m (μm)	a_0^*	Injected charge (nC)
Over matched	5	4.6	3,90, 15.4	70	2.99	0.209
Matched	3	7.7	3,90, 15.4	90	3.14	No self- injection
Under matched	2	11.5	3,90, 15.4	110	3.32	No self- injection

• Laser amplitude is above the self-injection threshold for over matched case

• Laser amplitude is below the self-injection threshold for matched and under matched cases

Evolution of the bubble

* Stony Brook University

Back bubble velocity is comparatively stable for the matched case $w_m = 90 \ \mu m$. Dephasing point is comparatively stable for the matched case $w_m = 90 \ \mu m$. There is less variation in the rate of change in bubble length for the

matched case.

Evolution of bubble for the matched case

Stable bubble evolution in 6mm plasma

- There is a good agreement between simulation results and empirical formula for the self-injection threshold- to suppress self-injection $a_0 < a_0^*$.
- There is strong correlation between injected charge and back of the bubble velocity- no self-injection for $\beta_b > \beta_e$.
- Comparatively stable bubble evolution for the matched case.
- We report a parameter range that suppresses self-injection in fully blownout bubbles which is an essential requirement in the experiments of controlled injection in LWFA.

Thank you

15