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Introduction

Laser Wake-Field Acceleration (WFA) [Tajima, Dawson 79] is the first
and prototypical mechanism of extreme acceleration of charged particles
along short distances: electrons “surf” a plasma wave (PW) driven by a
very short laser pulse, e.g. in a supersonic diluted gas jet.

Dynamics is ruled by Maxwell equations coupled to a kinetic theory for
plasma electrons, ions. Today these eqs can be solved via more and more
powerful PIC codes. However such computations involve huge costs for
each choice of the input data. Therefore it is crucial to run them after a
preliminary selection of the input parameters based on a simpler model.
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Here we present conditions enabling a hydrodynamic description (HD) of the
impact of a very short and intense laser pulse onto a cold diluted plasma
at rest as long as possible, study the induced PW and its wave-breaking (WB)
at density inhomogeneities [Dawson 59], derive preliminary conditions for opti-
mizing self-injection of small bunches of electrons in the PW and their LWFA.

We assume x , y -independence of: ñ0
= initial plasma density; the pulse =
transverse plane electromagnetic (EM)
traveling-wave in z-direction. We ar-
gue that with a ”real” pulse, i.e. with
a spot size R <∞ (not too small), the
results will hold inside the causal cone
trailing the pulse. Up to shortly after
the impact we can regard the pulse as

undepleted, ions as immobile. This allows to describe the remaining dynamics
by a family (parametrized by Z > 0) [GF14-18] of decoupled non-autonomous
and highly nonlinear Hamilton equations for systems with 1 degree of freedom;
ξ = ct−z instead of time t as an independent variable. After the laser-plasma
interaction the Jacobian Ĵ of the map from Lagrangian to Eulerian coordinates
is linear-quasiperiodic (LQP) in ξ with period ξH(Z) ≡ ctH(Z), i.e. of the form

Ĵ(ξ,Z) = a(ξ,Z) + ξ b(ξ,Z); (1)

a, b are ξH-periodic in ξ, and b has zero mean over a period, cf [Brantov... 08]
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Setup & Plane model
ve(0,x)=0. Input = nontrivial initial data:

1. the function ñ0(z) ≥ 0, with ñ0(z)=0 if z<0, ñ0(z)≤nb∈R+ if z>0,
yielding the initial electron and proton densities ne , np:

ne(0,x)=np(0,x)= ñ0(z); (2)

2. the vector-valued function ϵ⊥(ξ) yielding the initial laser-pulse EM fields:

E(t, x) = E⊥(t, x) = ϵ⊥(ct−z), B = B⊥ = k×E⊥ if t ≤ 0, (3)
with support(ϵ⊥) ⊆ [0, l ] fulfilling l ≲

√
πmc2/nbe2, or more precisely (14a):

the pulse reaches the plasma at t=0 and overcomes all e− before their z reach
the first negative minimum (essentially short pulse).

Figure 1: In particular, interested in ñ0(z) with a downramp+plateau
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As no particle can travel at speed c, ξ̃(t) = ct−z(t) is strictly growing: we can
adopt ξ = ct − z as the independent parameter on the worldline λ & in EoM.

xe(t, ·)
x̂e(ξ, ·)

initial position X=(X,Y,Z) −−−−→←−−−− x=(x ,y ,z) position at t, ξ

Xe(t, ·)
X̂e(ξ, ·) Xe(t, x) = X̂e(ct−z , x)

must be 1-to-1

Eulerian f (t, x) = f̃ (t,X)= f̂ (ξ,X) Lagrangian observables. Use CGS units.

Dimensionless: β≡ ẋ
c
, γ≡ 1√

1−β2
, 4-vel. u=(u0, u)≡(γ, γβ)=

(
p0

mc2
, p
mc

)
s≡γ−uz . s→0 implies uz→∞.
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Reduction of the dynamics to decoupled ODEs...

PDEs: Lorentz-Maxwell & continuity eq. for the electron fluid; + in. cond.

Are reduced to the family (parametrized by Z) of ordinary Cauchy problems

∆̂′ =
1+v

2ŝ2
− 1

2
, ŝ ′ = K

{
Ñ
[
Z+∆̂

]
−Ñ(Z)

}
, (4)

∆̂(0,Z) = 0, ŝ(0,Z) = 1 (5)

[GF18] (f̂ ′ ≡ ∂ f̂ /∂ξ) in the unknowns ∆̂(ξ,Z) ≡ ẑe(ξ,Z)−Z , ŝ(ξ,Z), in the
spacetime region where x̂e(ξ, ·) : X 7→ x is one-to-one and the pulse is not

significantly modified by its interaction with the plasma. Here K := 4πe2

mc2
, and

v(ξ) :=

[
eα⊥(ξ)

mc2

]2

, α⊥(ξ) := −
∫ ξ

−∞
dζ ϵ⊥(ζ), (6)

Ñ(Z) :=

∫ Z

0

dζ ñ0(ζ), U(∆;Z) :=K

∫ ∆

0

dζ (∆−ζ) ñ0(Z+ζ) . (7)

Clearly v ≥ 0, and Ñ(Z) grows with Z .
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...which are Hamiltonian for 1-dim systems

For each Z ≥ 0 (4) are Hamilton equations q′ = ∂Ĥ/∂p, p′ = −∂Ĥ/∂q of a
1-dim system: ξ, ∆̂,−ŝ play the role of t, q, p, and the Hamiltonian reads

Ĥ(∆̂, ŝ, ξ;Z) :=
ŝ2 + 1+v(ξ)

2ŝ
+ U(∆̂;Z) (8)

up to mc2. For ξ > l v=const, Ĥ=h=const, (4) are autonomous and can be
solved by quadrature; if Z>0 the solutions are periodic in ξ with period ξH(Z).

All other unknowns expressible in terms of
(
∆̂, ŝ):

p̂⊥

mc
= û⊥=

e α⊥(ξ)

mc2
,

p̂z

mc
= ûz =

1+û⊥2−ŝ2

2ŝ
,

p̂0

mc2
= γ̂=

1+û⊥2+ŝ2

2ŝ
, (9)

x̂⊥
e (ξ,X)− X⊥ =

∫ ξ

0

dη
û⊥(η)

ŝ(η,Z)
, ẑe(ξ,X)− Z = ∆̂(ξ,Z). (10)

As α⊥(ξ) is independent of X so are p̂⊥, û⊥; as ŝ, ∆̂ are independent of X ,Y
so are p̂z , ûz ,∆x̂e . Replacing (ξ,X) 7→

(
ct−z , X̂e(ct−z , x)

)
in the arguments

we get their Eulerian counterparts, e.g. ne(t, z)=
[
γ̂ ñ0
ŝ Ĵ

]
(ξ,Z)=

(
ct−z,Ẑe (ct−z,z)

).
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Figure 2: e− WL induced by the pulse of fig. 1 [Brantov et al 08] on the
initial density ñ0(Z) plotted below: WL of Z≃0 e− stray left away (slingshot
effect), WL of other up-ramp e− first cross after ∼ 5/4 oscillations (left arrow),
WL of down-ramp e− first cross after ∼ 7/4 oscills (right arrow + zoom)
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Figure 3: Up: normalized initial electron density with a downramp and a final
plateau. Down: corresponding normalized final energy h(Z) of the Z -electrons
after interacting with the pulse described in fig. 1. These conditions are as in
section III.B of Ref. [Brantov et al, PoP2008].
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Auxiliary problem: constant initial density

If ñ0(Z) ≡ n0 = const, then (4) and its solution are in fact Z -independent:

∆′ =
1+v

2s2
− 1

2
, s ′ = M∆, ∆(0)=0, s(0)=1, (11)

where M≡ Kn0, U(∆,Z)≡M∆2/2: relativistic harmonic oscillator.

Right: Solution of (11) if
the pulse is as in fig. 1, i.e.
with length l =40λ, linear
polarization, peak ampli-
tude a0 ≡ λeE⊥

M /2πmc2 =
2 (if λ = 0.8µm this leads
to a peak intensity I =
1.7 × 1019W/cm2), and
n0 ≡ nc/400, where nc ≡
mc2/e2λ2. As a result,
E=1.4mc2.

Note: ŝ is insensitive to
fast oscillations of ϵ⊥ !
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Figure 4: Corresponding phase
portrait (at ξ > l) .

Figure 5: Normalized electron density as a
function of z at ct = 120λ.

The Z -independent period ξ̄H = c t̄H is

ξ̄H
(
n0, h

)
= 4

√
2(h+γ⊥)

Kn0

[
E(α)− γ⊥

h+γ⊥
K(α)

]
, α :=

√
h−γ⊥

h+γ⊥
; (12)

K, E are the complete elliptic integrals of the 1st, 2nd kind. (12) reduces to

ctnrH ≡
√

πmc2

n0e2
in the nonrelativistic limit h→ 1, γ⊥ → 1, to cturH ≃ 15π

8

√
2h
M

in

the ultrarelativistic limit h→∞. Ĵ≡ ∂ẑe
∂Z

=1, Ẑe(ξ, z) = z−∆(ξ), and
n(t,z), u(t,z), ... evolve as travelling waves:

ne(t, z) =
n0
2

[
1+

1+v(ct−z)
s2(ct−z)

]
=

n0
1− βz(ct−z) . (13)
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Apriori estimates of ∆̂, ŝ for 0 ≤ ξ ≤ l

By (4) ∆̂, ŝ−1 grow positive for small ξ > 0. ∆̂(ξ,Z) reaches a maximum at
ξ̃1(Z) ≡ the smallest ξ>0 such that 1+v(ξ) = ŝ2(ξ,Z). ŝ(ξ,Z) grows as long
as ∆̂(ξ,Z)≥0, reaches a maximum at the first zero ξ̃2 > ξ̃1 of ∆̂(ξ,Z) decreases
for ξ > ξ̃2, while ∆̂(ξ,Z) < 0. Let ξ̃3(Z) ≡ the smallest ξ>ξ̃2 s.t. ŝ(ξ,Z) = 1.

The pulse is essentially short if l < ξ̃3(Z) ⇔ ŝ(ξ,Z) ≥ 1,

the pulse is strictly short if l < ξ̃2(Z) ⇔ ∆̂(ξ,Z) ≥ 0
(14)

for all xi ∈ [0, l ], Z ≥ 0. Essential shortness is compatible with maximum
pulse-to-plasma energy transfer, which takes place at a suitable l ∼ ξ̃2.

Let ∆(0)(ξ) ≡
∫ ξ

0
dη v(η)

2
, ∆u ≡ ∆(0)(l), nu, nd > 0 be some local bounds for ñ0,

nd(Z) ≤ ñ0(z) ≤ nu(Z) ∀z ∈
[
Z ,Z +∆u

]
, (15)

∆d(Z) be the negative solution of the eq. U(∆;Z) = Knu(Z)∆
2
u/2,

n′
u(Z)≡ max

z∈[Z+∆d ,Z ]
{ñ0(z)}. We abbreviate Mu ≡ Knu, Md ≡ Knd , M ′

u ≡ Kn′
u,

su ≡ 1+
Mu

2
∆2

u+

√(
1+

Mu

2
∆2

u

)2

−1, g(ξ,Z) ≡ Mu(Z)

2

∫ ξ

0

dη (ξ−η) v(η), (16)
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ŝ (1)(ξ,Z) ≡ min {su(Z), 1 + g(ξ,Z)} , f (ξ,Z) ≡
∫ ξ

0

dη (ξ−η)
{

1+v(η)

[ŝ (1)(η,Z)]2
− 1

}
∆(1)(ξ,Z) ≡ max

{
∆d , f

′(ξ,Z)
}
,

ŝ (2)(ξ,Z) ≡


1 + Md

2
f (ξ,Z) 0 ≤ ξ ≤ ξ̃(1)

2

max
{
ŝd , 1 +

[
Md
2
− M′

u
2

]
f
(
ξ̃(1)

2 ,Z
)
+

M′
u
2
f (ξ,Z)

}
ξ̃(1)

2 < ξ ≤ ξ̃′3.

(17)

where ξ̃(1)

2 (Z) < ξ̃2 is the maximum point of f (ξ,Z) and ξ̃′3 := min{l , ξ̃3}.
Some sufficient conditions for the pulse to be resp. strictly, essentially short:

f ′(l ,Z) ≥ 0 ⇒ ξ̃2(Z) > l , (18)

f (l ,Z) ≥
(
1− nd

n′
u

)
max

ξ
f (ξ,Z) ⇒ ξ̃3(Z) > l . (19)

Proposition 1. If the pulse is essentially short, then for all ξ∈ [0, l ]

∆u ≥ ∆(0)(ξ,Z) ≥ ∆̂(ξ,Z) ≥ ∆(1)(ξ,Z) ≥ ∆d ,

su ≥ ŝ (1)(ξ,Z) ≥ ŝ(ξ,Z) ≥ ŝ (2)(ξ,Z) ≥ 1.

(20)
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Hydrodynamic regime up to wave-breaking (WB)

Map x̂e(ξ, ·) :X 7→x invertible, and hydrodynamic regime justified, as long as

Ĵ ≡
∣∣∣∣∂x̂e∂X

∣∣∣∣= ∂ẑe
∂Z

=1 + ε > 0, ε ≡ ∂∆̂

∂Z
. (21)

Ĵ(ξ,Z)≤0: ∃Z ′ ̸=Z , s.t. ẑe(ξ,Z
′) = ẑe(ξ,Z), i.e. Z

′,Z electrons collide, ∃ WB.

ne(t, z)=

[
γ̂ ñ0

ŝ Ĵ

]
(ξ,Z)=

(
ct−z,Ẑe (ct−z,z)

) diverges where Ĵ = 0. (22)

Proposition 2. If ξ > l then Ĵ is LQP in ξ, because

Ĵ(ξ+nξH ,Z) = Ĵ(ξ,Z)−n∂ξH
∂Z

∆′(ξ,Z), ∀n ∈ N, Z ≥ 0. (23)

Proof: Differentiate the identity ∆[ξ+nξH(Z),Z ]=∆(ξ,Z) with respect to Z,
use ∆′[ξ+nξH ,Z ]=∆′[ξ,Z ]. 2

By (23) we can extend our knowledge of Ĵ from [l , l+ξH [ to all ξ ≥ l .

(23) agrees with (1) if b(ξ,Z) ≡ −∆̂′(ξ,Z) ∂ log ξH
∂Z

, a(ξ,Z) ≡ Ĵ(ξ,Z)− ξb(ξ,Z).
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Figure 6: Ĵ(ξ,Z) = 1+ε(ξ,Z) for Z = 50λ, 90λ in the situation of fig. 2.
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Figure 7: Evolution of ŝ, ∆̂, γ̂ (up) and Ĵ, σ̂ (down), in the situation of fig. 2,
for the Z = 195λ electron layer; there ñ0(Z) decreases, Φ(Z) > 0, ϑ(Z)....
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Let σ ≡ l ∂ŝ/∂Z , κ ≡ (1+v)/l ŝ3, ň(ξ,Z) ≡ ñ0 [ẑe(ξ,Z)],

χ ≡
(
ε
σ

)
, A ≡

(
0 −κ

Klň 0

)
, λ ≡

(
0
Kl [ň−ñ0]

)
.

Differentiating (4) with respect to Z we find that χ fulfills the Cauchy problem

χ′ = Aχ+ λ, χ(0) =

(
0
0

)
. (24)

The solution of (24) can be expressed as

χ(ξ) = G(ξ)

∫ ξ

0

dη G−1(η)λ(η), (25)

where G is a 2×2-matrix solving G ′ = AG , detG(0) ̸= 0.

For ξ≥ l the eqs G ′=AG and (24) are ξH-periodic; LQP follows also from
Floquet Theorem.
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Bounds on the Jacobian for small ξ > 0, and no WBDLPI conditions

To bound ε, σ for small ξ we introduce the Liapunov function

V ≡ ε2+b σ2, b ≡ 1/Mu l
2. (26)

|ε| ≤
√
V , V (0,Z) = 0. Using (24) and the Comparison Principle one shows

|ε(ξ,Z)| ≤ δ
√
Mu

∫ l

0

dη exp

{√
Mu

2

[
(l−η) δ+

∫ l

η

dζ D(ζ)
]}

=: Q2

≤ δ
√
Mu

∫ l

0

dη exp

{√
Mu

2

[
(l−η) δ+

∫ l

η

dζ ṽ(ζ)

]}
=:Q1

≤ 2δ

ṽM+δ

{
exp

[
ṽM+δ

2

√
Mu l

]
− 1

}
=: Q0 ∀ξ ∈ [0, ξ̃′3],

where D(ξ,Z) := max

{
1+v(ξ)

[ŝ (2)(ξ,Z)]3
− 1 , 1− 1+v(ξ)

[ŝ (1)(ξ,Z)]3

}
≤ ṽ(ξ) := max{v(ξ), 1} ≤ max{vM , 1} =: ṽM ,

Proposition 4. If (19) and either Q0(Z) < 1, or Q1(Z) < 1, or Q2(Z) < 1 are
fulfilled, then no Wave-breaking during the laser-plasma interaction (WBDLPI)
involves the Z -electrons. If this occurs for all Z , then no WBDLPI anywhere.
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Nonrelativistic regime (NR): v ≪ 1, ŝ ≃ 1, lκ ≃ 1, ∆u ≪ l , D ≃ 0; Q2 < 1
boils down to

r(Z) := δ(Z)
√
Knu(Z) l < 0.81, δ(Z) := 1− nd(Z)

nu(Z)
. (27)

(27) is automatically satisfied if
√
Knu(Z)l < 0.81, as δ ≤ 1 by def., otherwise

is a very mild condition on the relative variation δ of ñ0(z) across [Z ,Z+∆u].

If in some interval ]0, Z̄+∆u] ñ0(Z) is C
1 (at least piecewise), and

0 ≤ d
√
ñ0

dZ
≤ 0.81

2l ∆u

√
K

=
2× 105

l ∆u
cm−1/2, (28)

then it fulfills (27): no WBDLPI! Qualitatively the same also in relativistic
regime. Applies to most cases of physical interest:

Figure 8: If target = supersonic gas jet then ñ0(z) is of type 4;
if target = aerogel all types of ñ0(z) are possible.
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Figure 9: Down: normalized ñ0 ∈ C 1 (left), ñ0 ∈ C 0 (right). Up: WL of the
associated Z -electrons interacting with the pulse of fig. 1. Arrows pinpoint
intersections of WL.
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Motion of a test electron in the plasma wave

The ẑi , ŝi of a test electron injected at ξ = ξ0 > l in ẑi (ξ0) = z0 > zs (PW
behind the pulse along the plateau) with ŝi (ξ0) = s0 evolve as follows:

ŝi (ξ) = s0 +M

∫ ξ

ξ0

dy ∆(y) = δs + s(ξ), ẑi (ξ) = z0 +

∫ ξ

ξ0

dy

2

[
γ⊥
i

2

ŝ2i (y)
−1

]
(29)

(γ⊥
i

2=const, tipically ≃1). Note: ŝi (ξ)−s(ξ) = δs ≡ s0−s(ξ0) = const!
If smi ≡ sm+δs ≤ 0, then ŝi (ξ) vanishes at some ξf > ξ0 (while ŝ, s can vanish
nowhere!): since tf =∞, this yields an electron trapped in the PW!
If smi <0, for ξ ≃ ξf we have ŝi (ξ) ≃|s ′(ξf )| (ξf−ξ) =M |∆(ξf )| (ξf−ξ), whence

ẑi (ξ) ≃
γ⊥
i

2

2 [M∆(ξf )]
2 (ξf −ξ)

ξ→ξf
−−−→ ∞. (30)

Solving (30) for ξf −ξ, we can express ŝi , γ̂i as functions of zi , and find

γi =
γ⊥
i

2

2si
+

si
2
≃ |M∆(ξf )| zi

zi→∞
−−−−→ ∞; (31)

in this simplified model trapped test electrons cannot dephase (as the pulse
travels faster, at c) and their energy grows ∝ the travelled distance.
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Self-Injection by WB

If for some Z ′ ≤ zs ≤ Z (with Z−Z ′ < ∆M(Z
′)−∆m) the Z ′-electron layer

(moving forward) first hits the Z -electron layer (moving backward) at some
ξ = ξc > l , i.e. ẑ(ξc ,Z) = ẑ(ξc ,Z

′) ≡ z0, few Z ′-electron will be injected in
the PW at z = z0 without changing ŝ, and (29-31) apply with s0 = ŝ(ξc ,Z

′).
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We have computed the range of energies that self-injected e− arising from
gentle WB collisions as in the right part of fig. 2: the maximum energy
quantitatively agrees with the results of PIC simulations in [Brantov et al 08].

100.0 100.5 101.0 101.5 102.0

0.0

0.2

0.4
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Ξ �Λ

s
el

-
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j

Figure 10: Up: si as a function of ξ for the highest-energy electrons (HEE),
which are self-injected by the collision of the Z = 198λ electrons with the
Z = 202λ ones (ξc = 99λ). Center: The path in the zi−si plane of the same
HEE. Down: The Lorentz factor as a function of zi of the same HEE.



Introduction Setup & Plane model HR vs. Wave-breaking Self-injection Discussion References

For fixed zi , n0, γi is maximal if −δs = γ⊥ ≃ 1, so that ∆(ξf )| = ∆m:

γM
i (zi , n0) ≃ M |∆m| zi =

√
2K f (n0) zi , f (n0) ≡ n0

[
h̄(n0)− γ⊥]. (32)

Figure 11
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1st Step: We choose n0 = nM
0 ≡ max point of f to maximize γM

i for fixed zi :

We get optimal self-injection if we can find small intervals of Z ,Z ′ & ξc(Z ,Z
′)

s. t.
ẑ(ξc ,Z) = ẑ(ξc ,Z

′), s(ξc)− ŝ(ξc ,Z
′) = γ⊥; (33)

then γ̂M(ẑi ) is approximately as in (32).
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The 2nd step in our optimization process is the determination of pairs Z ′,Z
fulfilling (33). In (33) also ξc > l is an unknown; but since for ξ > l the phase
portraits are determined, we can first get rid of ξc by expressing the ŝ’s as
functions of ∆̂’s; this transforms (33) into

∆′ −∆ = Z − Z ′, s+(∆,Z)− s−(∆
′,Z ′) = γ⊥. (34)

constrained by ∆′ ∈ [0,∆M(Z
′)], ∆ ∈ [∆m(Z), 0]. Clearly solutions can only

exist if
Z−Z ′ < ∆M(Z

′)−∆m(Z), sM(Z)−s−(Z ′) > γ⊥. (35)

Solutions of (34) can be graphically visualized by families of figures like fig. 11.
We determine the order of magnitude of Z−Z ′ as 1/2 rhs(35a):

Z−Z ′ ∼ ∆M(Z
′)−∆m(Z)

2
≃

√
2f (n′

0)√
Kn′

0

+

√
2f (nM

0 )√
KnM

0

≃
√

2f (nM
0 )√

KnM
0

(
1 +

nM
0

n′
0

)
, (36)

where we have abbreviated n′
0 ≡ ñ0(Z

′) and used that f (n′
0) ≃ f (nM

0 ) because
f ′(nM

0 ) = 0
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Next we look for the unknown ξc .
A s-jump as in fig. 11 can occur at ξ = ξc(Z ,Z

′) only if, for some i , j ∈ N, with
j > i , P(ξ,Z) has completed i+ 1

2
orbits and P(ξc ,Z) is on its arc

⌢

P3P0 (see

fig. 4), while P(ξ,Z ′) has completed j orbits and P(ξc ,Z
′) is on its arc

⌢

P1P2:

j ξH(Z
′) ∼ ξc(Z ,Z

′) ∼
(
i+

1

2

)
ξH(Z)

or approximately ξ̄H(n
′
0, h

′) ≃ ξH(Z
′) ∼ 2i+1

2j
ξH(Z) =

2i+1
2j

ξ̄H
[
nM
0 , h̄(n

M
0 )

]
; via (12)

this allows a first rough determination of n′
0 as

n′
0 ≃

(2i+1)2

(2j)2
nM
0 . (37)

The smallest i , j consistent with no WBDLPI are i=1,j=2, whereby n′
0=

16
9
nM
0 .

By more complicated calculations one finds a more accurate relation yielding n′
0

in terms of nM
0 . Imposing ñ0(Z

′) = n′
0, and thus determining via (36) also the

best slope of ñ0(Z) before the plateau, is the 3rd step in our optimization
process.

The 4th, final step is to choose, using the qualitative bounds of Proposition 4
(or more accurate ones), ñ0(Z) for Z < Z ′ so that the Z -electrons are not
involved in any WB for ξ < ξc preferably minimizing Z ′ (many possible
choices).
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Discussion and conclusions

Summarizing, the steps of our preliminary optimization process are:

1. finding the optimal value nM
0 of the plateau density n0 maximizing f (n0);

2. finding one or a small number of pairs Z ,Z ′ (Z ≳ zs ≳ Z ′) allowing
solutions of (34); Z−Z ′ is approximately given by (36);

3. finding n′
0 ≡ ñ0(Z

′) via (37) or more accurate computations;

4. adjusting ñ0(Z) for Z < Z ′ to avoid other WB for ξ < ξc .

Range of validity of the no-depletion approximation

One shows by self-consistency that a slowly modulated monochromatic pulse is
not significantly affected by the plasma interaction in the intersection of stripes

0 ≤ ct − z ≤ l , 0 ≤ e2n0λ

2mc2
(ct + z) ≪ 1. (38)

By λ≪ l and (14), this is much longer than l in the (ct+z) direction: fine!
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Conditions on the laser spot radius R

Under the above plane wave assumptions

∆̂⊥≃ −eϵ
⊥

k2mc2ŝ
, |∆⊥

M | ≃
e

k2mc2
max

{ ϵ

ŝ

}
≤ a0

k

[
h+

√
h2−γ⊥2

]
. (39)

Actually, the real initial pulse is cylindrically symmetric around z⃗ and has a
finite spot radius R, i.e. at t = 0 E = ϵ⊥(−z)χ(ρ), B = k×E, where
ρ2=x2+y 2 and χ(ρ) ≥ 0 is 1 for ρ ≤ 1 and χ(ρ)→ 0 rapidly as ρ→∞.
For the applicability of our results at least in some spacetime region it must be

R ≫ |∆⊥
M |, l . (40)

Using causality arguments we can say that, as long as the pulse is not
significantly depleted and its spot radius remains R:

1. The electron dynamics remains the
same within the lightcone (with axis z⃗)
trailing the pulse. This applies in partic-
ular to electrons self-injected in the PW.

2. If R, ñ0 are small enough the sling-
shot effect (backward expulsion of ener-
getic electrons from the plasma-vacuum
interface) may occur [Fiore et al 2014-
2016].
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impact of short laser pulses on cold diluted plasmas, forthcoming paper

G. Fiore, M. De Angelis, R. Fedele, G. Guerriero, D. Jovanović,
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