Single-shot, transverse self-wakefield reconstruction from screen images

Nathan Majernik^{*,1}, Walter Lynn¹, Gerard Andonian¹, Tianzhe Xu², Philippe Piot², James Rosenzweig¹

¹ UCLA, Los Angeles, CA, USA

² NIU, DeKalb, IL, USA

*Corresponding author: NMajernik@g.ucla.edu

Northern Illinois University

Motivation

- Goal is to understand the transverse self-wakefields
 - Can be both beneficial (streakers) or problematic (BBU)
 - See Walter Lynn's talk "Observation of Skewed Electromagnetic Wakefields in an Asymmetric Structure Driven by Flat Electron

Bunches"

- Complements simulation
- May pair with longitudinal diagnostics for greater insight
- May play well with multileaf collimators; giving very granular, real-time control over wakes

Assumptions

- Thin lens approximation
 - Beam spatial distribution does not appreciably change over interaction
 - Each particle only "feels" one part of the wakefield
- Wakefield is the same, up to multiplicative constant, along ζ
 - Satisfied if beam is short relative to the wavelength of all relevant modes
 - Each mode's wake response approximated by linear function with different slopes; ratio constant
- Wakefield is well approximated by low order multipoles

Benchmarking to simulation: setup

Benchmarking to simulation: example

3.0

500 MeV, 2 nC, 2.2° tilt,

7.7:1 spot size, run past

Benchmarking to simulation: reconstruction

- Create virtual screen images
- Reconstruct to n = 6, using known κ PDF
 - 12 free parameters
- Optimizer figure of merit: $\epsilon_{fit} = 1.3\%$
- Compare reconstructed fields to ground truth: $\epsilon_{recons} = 2.6\%$

Moving closer to experiment

- Drop known κ PDF, use parameterized distribution
 - Simple but powerful, single parameter
 - + $\epsilon_{\rm fit}$ from 1.3% to 1.8%, $\epsilon_{\rm recons}$ from 2.6% to 3.1%
- Vary n to see how $\epsilon_{\text{fit}} \, \text{and} \, \epsilon_{\text{recons}}$ respond
 - We knew n=6 was sufficient, wouldn't know that in experiment before reconstructing

Experimental data reconstruction

- AWA flat beam skew wake
 data
 - 43 MeV
- Parameterized κ PDF, n = 6, x_c and y_c active
 - 15 free parameters
- $\epsilon_{fit} = 6.0\%$

Conclusion

- Transverse wakefields are important to understand but hard to measure
- Introduced a technique to reconstruct the selfwakefields without additional hardware; a single screen is sufficient
- Relies on assumptions which can be defended
- Benchmarked against simulation data
- Applied to experimental data
- Room to grow

Supported by DOE grants DE-SC0017648 and DE-SC0018656 Northern Illinois University

