

Application of Optical Stochastic Cooling Mechanism to Beam Shaping

A.J. Dick Collaborators: J. Jarvis (Fermilab), P. Piot (NIU)

Advanced Accelerator Concepts Workshop November 10, 2022

University

Northern Illinois

Overview

Theory	Techniques	Simulation	Shaping	Conclusion
Longitudinal Dynamics	Multi-Turn Shaping	IOTA Lattice	Momentum Reduction	Additional Distributions
OSC Mechanism		Toy Model		Physical Limits
Optical Line/ Amplification	Intra-Turn Shaping	ELEGANT	Micro-bunch Formation	Experimental Limits
Theory	Techniques	Simulations	Shaping C	onclusion 2/20

Theory

Longitudinal Motion in Rings

Simulations

- Storage rings trap bunches of particles
 - Momentum spread usually causes smearing
- The RF system is responsible for holding the bunch together and restoring energy lost to radiation
- Particles orbit the reference point in longitudinal phase space with a constant frequency

Techniques

Conclusion

3/20

Shaping

Optical Stochastic Cooling

Simulations

- OSC has 4 main components
 - The pickup and kicker undulators
 - p dependent particle bypass
 - Optical Line

Theory

- Radiation produced in the pickup applies a force in the kicker
- The strength of the force depends on the momentum deviation of each particle

Techniques

Shaping

Conclusion

Theory

Optical Delay Line

Simulations

- The delay system controls the arrival of the radiation in the kicker
 - The reference particle receives no net energy change

Techniques

Shaping

Conclusion

• An optical amplifier can be inserted in the optical line to increase the cooling rate using a CW drive laser

Theory Techniques Simulations Shaping Conclusion 6/20

- The OSC mechanism provides a corrective kick in momentum
- This *squeezes* the beam in one direction, but as the beam orbits in LPS, it shrinks uniformly

Theory Techniques Simulations Shaping Conclusion 7/20

Turn-Dependent Shaping

- In normal operation, the undulator radiation is always amplified but this is not necessarily required
- The amplification can be modulated on a turn-by-turn basis
- By timing the amplification with the synchrotron motion, the beam is squeezed in only one direction

Theory **Techniques**

Simulations

Shaping

Conclusion 8/20

Intra-turn Shaping

• The amplification pulse can be a function of time within a single turn

Modeling of OSC at IOTA

- OSC was demonstrated at IOTA in 2021
 - This lattice is used to simulate the shaping since it is well studied
- A simple toy model was used for quick simulations of various shaping methods

Techniques

- Based on transfer matrices
- Pickup \rightarrow Kicker

Theory

- Kicker \rightarrow RF Cavity
- RF Cavity \rightarrow Pickup

Conclusion

10/20

Shaping

Simulations

lheory

Modeling of OSC

Simulations

Conclusion

Shaping

- For more accurate simulations, we used a model of we developed OSC in ELEGANT
 - Synchrotron radiation, intra-beam & residual gas scattering
 - Full particle tracking (400,000 km)
- This model was benchmarked against the data collected during the OSC experiment
 - Excellent agreement with cooling rates and equilibrium distributions

Techniques

Simulations

- Amplify the OSC radiation as a function of the synchrotron phase
- Ideally, use periodic delta functions
 - О, л, 2л, 3л, ...

lheory

 Increase the rate of cooling by using wider envelopes

$$A(\phi) = \cos(\phi)^n$$
 $n = (2, 4, 6, ...)$

Techniques

Conclusior

12/20

Shaping

Micro-bunch Formation

Simulations

 Target temporal slices of the beam using a "comb" distribution

Combine with flattening term

Theory

$$A(\phi, t) = \cos(\phi)^n \cos(k_0 t)^2$$

Techniques

Unfortunately, this just pinches the beam at points k_0 apart!

Shaping

Ó

Conclusion

Theory

Micro-bunch Formation

Simulations

Techniques

- The solution to this is to introduce heating modes
- Shifting the comb distribution during heating modes will help move particles to the correct spaces
- The delay can be introduced using the delay plates

Shaping

$$A(\phi, t) = \cos(\phi)^n \cos(k_0(t + \phi/4))^2$$

Conclusion

Micro-bunch Formation

Theory

Techniques

Simulations

Shaping

Conclusion 15/20

Theory

ELEGANT Simulations

Simulations

Techniques

- The beam flattening was demonstrated in ~20 synchrotron periods (~0.2 s) for a gain of 30 dB
- ~90% reduction in momentum spread

Shaping

 Minimal reduction in the non-flattened plane

Conclusion

ELEGANT Simulations

More Distributions

Uniform Distribution

Ring of Beamlets

Wedge Distribution

Theory

Techniques

Simulations

Shaping

Conclusion 18/20

Conclusion

19/20

• Physical Limitations

 Efficiency of these methods may be limited by scattering, cooling limits of OSC, intrabeam effects, etc.

• Experimental Limitations

- Amplified OSC has not yet been demonstrated
- Methods for shaping the drive laser pulse are not yet understood
- Speed of the delay plates may limit access to heating modes

• Applications

- Microbunching can be used as a tunable source of coherent THz radiation
- Shaping the transverse phase space

Theory Techniques Simulations Shaping **Conclusion**

heorv

Acknowledgments

Conclusion

- This work was supported by U.S. National Science Foundation under award PHY-1549132, the Center for Bright Beams.
- Fermilab is managed by the Fermi Research Alliance, LLC for the DOE under contract number DE-AC02-07CH11359. AD was partially supported by the DOE Office of Science Graduate Student Research (SCGSR) Program.
- Some of the computing resources used for this research were provided on BEBOP, a high-performance computing cluster operated by the Laboratory Computing Resource Center (LCRC) at ANL.
- Thank you to Dr. Michael Borland for his help implementing the ELEGANT model

Techniques

Simulations

Shaping

Longitudinal Shaping

Smear the momentum distribution as you sweep the optical delay

 90° later, the momentum spread becomes the longitudinal profile

