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Electron radiography based on the electron beams from a LPA could enable a flexible,
portable, powerful diagnostic for the visualization of ultra-fast, ultra-thin dynamic processes
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* Prior electron radiography (eRad) experiments using linac-produced electron beams have demonstrated that
eRad could fill the existing gap in radiographic capabilities

« Experiments on OMEGA EP demonstrated contact and projected eRad using the electron beam from a laser-
plasma accelerator (LPA) with resolutions as low as 100 pym*

« Experiments on the OMEGA EP laser have shown the potential capability of this platform to radiograph
plasma-generated fields and penetrate materials that protons cannot

 Future work will seek to upgrade the platform to um-scale resolutions and to capitalize on this capability to
help better understand driven targets and hohlraum physics

* G. Bruhaug et al. Submitted to Scientific Reports




eRad is a potential path to fill the gap in visualizing fast, dynamic processes in
the meso-scale range of materials from mg/cm? to several mg/cm?
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« Today’s workhorse radiographic probes can evaluate the following scales of areal density
— The very thick (180 g/cm? using LANL's DARHT)

— The intermediate (1-50 g/cm? using LANL's pRad LANCSE) m
— The very thin (< 0.001 g/cm? using Washington State’s DCS)

 Prior eRad experiments using linac-produced electrons demonstrated the ability of eRad to visualize
materials in the 0.01 g/cm?2” to several g/cm?' range

— These experiments showed that the gap between very thin and intermediate areal density capabilities is
the one that eRad can potentially fill

Can LPA-based eRad driven by the lasers already

associated with HED facilities also fill that gap?

* Merrill, F.E., “imaging with penetrating radiation for the study of small
dynamic physical processes”, Laser and Particle Beams, 2015

DARHT: Dual-Axis Radiographic Hydrodynamic Test Facility

DCS: Dynamic Compression Sector at Washington State
** E._Merrill et al., Nuclear Instruments and Methods in Physics Research

@M ROCHESTER Section B: Beam Interactions with Materials and Atoms 261 (1-2), 382 (2007).

UNIVERSITY of

T F. E. Merrill et al., Applied Physics Letters 112 (14), 144103 (2018).



In additional to filling the gap, charged particle (electron & proton) radiography has
several advantages compared to classic radiography (neutrons & x/gamma rays)
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 Generation:
— Typically cheap and efficient compared to neutrons and x/gamma rays
- Electrons even more so than protons
— Control over pulse length, depending on generation mechanism (fs to s)

o Utilization:
— Extremely penetrative compared to x-rays
- Able to penetrate high Z material and a wide variety of areal densities
— Sensitive to magnetic and electric fields

- Compared to protons, electrons are more penetrating for a given energy while providing more
sensitivity to magnetic fields and less to electric fields*

— Magnetic optics can be used to enhance the resolution and utilize distant focal planes

- Also can be used to separate the image from the bremsstrahlung background caused by the probing
electrons

* Merrill, F.E., “imaging with penetrating radiation for the study of
small dynamic physical processes”, Laser and Particle Beams, 2015




ontact eRad

eRad experiments were performed on OMEGA EP using the LPA platform, which
can produce electron beams with charges as high as 0.7 yC*
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e Ti
e W
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_ e S. Steel
M5 gas jet
N & D 0s7e = 6 0r 10 mm
~N
1054 nm, ~700 fs | 12 OR
35 to 100 J, apo f'ée to
a,~2.91t05.8
0 / *J.L. Shaw et al. Sci. Rep. 11, 7498 (2021).
~ G. Bruhaug et al. Submitted to Scientific Reports
R Eggiaial vensitl EPPS: eIect'ron—positron—proton spectrometer
l&%gj ROCHESTER OAP: off-axis parabola

eE, . .
ag = FZO o \/1o[W/cm?], I, = Peak laser intensity



ontact eRad

eRad experiments were performed on OMEGA EP using the LPA platform, which
can produce electron beams with charges as high as 0.7 yC*
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1054 nm, ~700 fs |
35to 100 J,
a,~2.91t05.8
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* From M. Freeman
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The structure from the electron beam can be flattened with a reference image
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Analysis Methods

Measured resolution is calculated by fitting an error function to the lineout
across a step in material thickness*
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« Measurements were taken for all
steps and holes

 Error was determined by averaging
multiple measurements

e Blur can be attributed to several
factors
» Source size
« Imaging system pixel size
* Uncorrected Multiple Coulomb
Scattering (MCS)

Box lineout 10s of pixels wide » Bremsstrahlung broadening

E30461

* G. Bruhaug et al. Analysis methods for electron radiography
based on laser-plasma accelerators, Proceedings of 2022 North
American Particle Accelerator Conference




Analysis Methods

The measured resolution is compared to the theoretical resolution for charged
particle radiography
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Resolution = ! JAs? 4+ Ax2 + Ap?
Magnification

As = Source Size
— For targets less than a radiation length in thickness, the source size dominates
— Typically ~30 um in our system

Ax = Scattering

— For targets on the order of a radiation length or more, the scattering Ax dominates
— Approximately scales as target Z? + Z

Ap = Imaging system pixel size
— 25-100 um for image plates in our system

Note that it does not account for bremsstrahlung blurring S Bruhaug et al. Submitted to Scientific Reports
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Results: Contact eRad

The resolution in the contact eRad configuration degraded with increasing

thickness and Z number of radiography target*
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* G. Bruhaug et al. Submitted to Scientific Reports
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ojected eRad

The projected eRad studies required some modifications to the experimental
setup
uUR
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Materials:

 Polyimide (3 stacks)

« Cu
0.25mm 1 mm radius
e Ti
* W 0.25 mm
Projection
radiography
0.50 mm object

0.50 mm

E30343

* G. Bruhaug et al. Submitted to Scientific Reports




Results: Projected eRad

The resolution was insensitive to the Z number of the target material*
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Possible reason is that bremsstrahlung blurring dominates the scatter in thin samples

*G. Bruhaug et al. Submitted to Scientific Reports




Results: Projected eRad

The resolution was also insensitive to the magnification of the target*
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Results: Projected eRad

The measured diameters were ~1.5X smaller than expected based on
projection calculations
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* An equation* was derived to
determine the electric field
needed to alter the images in
this way

Projection
radiography
object

« ~1 GV/m found to fit both
analytically and with Geant4
simulations®

E3046371 Gas iet
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Fields in laser-driven targets were already measured!

*G. Bruhaug et al. Submitted to Scientific Reports
"G4 Beamline 3.06.” "T. Roberts, Muons Inc, 2018, [Online]. Available:

http://www.muonsinternal.com/muons3/g4beamline/G4beamlineUsersGuide.pdf.




Future Work

Future work for this eRad platform includes driven targets, hohlraum-relevant
work, and the addition of magnetic optics
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« We recently collected electron radiographs of foils driven by
long pulse UV heater beams

— Comparing that work to equivalent pRad experiments*

t=1y+2.53ns

4 kJ, 2.5 ns
« In December, experiments will investigate magnetic field UV drive laser
generation in metal foils

— Seeking to further the understanding of the “drive deficit”
issue in hohlraums?

« M. Freeman has designed a chicane and magnetic optic system
for OMEGAEP

— <10 um resolution predicted

* Gao L., et al, “Magnetic field generation by Rayleigh-taylor instability
in laser-driven planar plastic targets”, PRL, 2012
T Personal communication with C. Walsh
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Summary/Conclusions

Electron radiography based on the electron beams from a LPA could enable a flexible,
portable, powerful diagnostic for the visualization of ultra-fast, ultra-thin dynamic processes
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Prior eRad experiments using linac-produced electron beams have demonstrated that eRad could fill the
existing gap in radiographic capabilities

« Experiments on OMEGA EP demonstrated contact and projected eRad using the electron beam from a LPA
with resolutions as low as 100 pm*

« Experiments on the OMEGA EP laser have shown the potential capability of this platform to radiograph
plasma-generated fields and penetrate materials that protons cannot

 Future work will seek to upgrade the platform to um-scale resolutions and to capitalize on this capability to
help better understand driven targets and hohlraum physics
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