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X-rays with a small source size can provide high resolution for 
various applications 

Rayleigh Taylor Instability 

Laser Wakefield Acceleration (LWFA) generated X-rays can create a 
diagnostic capable of high spatio-temporal resolution
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 Microjetting

(Saunders PRL 2021)

Shockwave 

(Wood Nat. 2018) 

 (Rigon Nat. Comm. 2021)
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Electrons & X-rays generated by Self Modulated and Blowout Regime 
LWFA have distinct attributes  

Blowout Regime Self Modulated Regime

GeV 

electron
bunch 

laser pulse laser pulse

electrons

▪ c𝜏 < λ
p

▪ monoenergetic e- bunches
▪ GV/m e- acceleration
▪ smaller source size

▪ c𝜏 >> λ
p

▪ broad e- energy distribution
▪ high flux + charge
▪ larger source size
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How are X-rays generated from SM/LWFA? 

Experimental Set-up 

Betatron

Diagram of Process Type of Radiation 
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How are X-rays generated from SM/LWFA? 

Experimental Set-up 

Betatron

Inverse Compton Scattering

Diagram of Process Type of Radiation 
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How are X-rays generated from SM/LWFA? 

Electron X-ray Photon

Experimental Set-up 

Betatron

Inverse Compton Scattering

Bremsstrahlung 

Diagram of Process Type of Radiation 
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We use Fresnel Diffraction to determine the size of an x-ray source
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The Fresnel Diffraction pattern is dependent on the spectral 
distribution
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Using a modified X-ray ray tracing code we can detect the source 
size from a radiograph of a curved object

x (radiograph line out 
dim

ension)

X-ray Ray tracing Model

X-ray Radiography Line out comparison 
from different source sizes 

200 μm
2000 μm

~4.72 mm

~5.75 m
m

30 μm thick

R. Tommasini et al. POP 24, 053104 (2017)

side view of hohlraum

top view
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X-ray source size is investigated at Titan, Jupiter Laser 
Facility (JLF)

Titan, Jupiter Laser Facility (JLF)
Self-Modulated LWFA  

Pulse width: 700±300,100 fs
Spot size (focal spot FWHM): 29μm  
Energy: up to ~120J
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Spectral characterization of Titan, JLF SM-LWFA X-ray Source

11

< 90 KeV (ICS), Filter Wheel + Stacked 
Image Plate Spectrometer
 

> 90 KeV, High Energy Differential Filtering Photon 
Spectrometer (HEDFPS)

Plot of Betatron, ICS and Bremsstrahlung 
Spectra

Methodology 

a = .65m

b = .946mElectrons

Filter Wheel

Or

King, Rev. Sci. Instrum. 90, 033503 (2019) 

HEDFPS
Lemos, POP, 26, 083110 (2019).

 Lemos, PRL, in preparation. 

Foil Target (ICS or 
Brem.) 
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a = .65m

b = .946m

500 μm thick 
W RT

Betatron X-rays with a source size of ~25 µm from SM-LWFA at 
Jupiter Laser Facility  

Electrons

King RSI 2019

Betatron 
source size
24 ± 5 μm
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Inverse Compton Scattering X-rays with a source size of ~100 µm 
from SM-LWFA at Jupiter Laser Facility 

ICS source size: 106 ± 8μm

 Resolution Target Line out of 150μm Slits 

I.Pagano, Source Size Analysis of Self Modulated Laser Wakefield Acceleration generated X-rays,  POP,  In Preparation.
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 Hohlraum target radiograph of ICS X-rays confirms a source size 
of ~100 µm from SM-LWFA at Jupiter Laser Facility 

source size: 114 ± 12μm

I.Pagano, Source Size Analysis of Self Modulated Laser Wakefield Acceleration generated X-rays,  POP,  In Preparation.
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ICS + Brem. X-rays with a source size of ~200 µm from SM-LWFA 
at Jupiter Laser Facility 

15

ICS + Brem 
source size
234 ± 17 μm

Diffraction pattern from RT RadiographLineout analysis from Hohlraum Radiograph

ICS + Brem
source size
233 ± 7 μm
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▪ Laser spot size 

▪ LWFA Regime & electron 
energy spectra 

▪ X-ray generation mechanism

Factors Impacting Resolution

How does the X-ray radiation generation mechanism impact 
source size? 

I.Pagano, Source Size Analysis of Self Modulated Laser 
Wakefield Acceleration generated X-rays,  POP,  In Preparation.
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Conclusions & Future work

▪ Distinguishing between the differences in source size from various parameters 
enables further development of LWFA X-ray sources for specific purposes.

▪ Analytical tools developed for analysis of SM-LWFA at JLF, can be applied to the 
blowout regime at TPW, for further characterization and comparison.

▪ We will perform HEDS applications experiments to demonstrate radiography of 
dynamic processes. 
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