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Applications: Photon activation as Medicine & Radiography of high Z materials 

 Strong field physics: Bi-harmonic Compton interaction with ATF’s CO2 laser

 Hard X-ray optics developments: DDS measurement & Focusing or Collimation

 X-ray OAM investigation: Higher order harmonics by circular polarized CO2 laser

YAG laser: 1064 nm, ~ 100-200 mJ
e-beam ~ 70 MeV, ~ 0.3-0.5 nC

e
~ 1 µJ/pulse* 

@ hv ~ 87.5 keV

*(106-7 photons) (100 keV)  (1.610-19) 

~ 0.1 - 1 µJ / shot)

BNL ATF Experiment AE87: Experiment Goals     

HARD X-ray ICS at hv ~ 100 keV range
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{Goals of AE87 as of now: Establish basic set up of ICS by YAG & upgraded a0>1 CO2 lasers}

2021yr :

Qualitative study

by Au filters 



Relativistic e-beam

TODAY: Overview of 

nonlinear Compton study by CO2 laser in BNL ATF

Red-shifting and BW increase:

Photon absorption by electron = Mass shift

hνX-ray => hνX-ray / (1+aL
2/2+𝜸𝟎

𝟐𝜣𝟐)

 Harmonic generation/angular dependence:

Multi-photon process in dense photon field

hνX-ray = 42 hνLn

Advantage of CO2 laser: Longer wavelength

 Higher photon number per intensity                                  

Narrow bandwidth emission

8

Figure-8 electron motion

a0 ~1 case* 2nd

2nd

1st, 3rd…

Nonlinear ICS: aL~1, Transverse motion Relativistic, nontrivial  longitudinal oscillation**

Slow down electron’s velocity, or Effective mass increase 

Linear laser polarization

Intense laser
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Numerical spectrum estimate

by Lenard-Wiechert calculation approach (Using extra RAM)

e

screen

1st (hv<7.6keV)             2nd (7.6<hv<15.2 keV)         3rd (15.2<hv<22.8 keV) 

Cone angle ~ 1/  ~ 1/2  ~ 1/3
Ipeak,2nd / Ipeak,1st ~ aL

2/4        Ipeak,3rd / Ipeak,2nd ~3aL
2/4

y yyx xx

Example: Radiation distribution of single particle scattering, a0~0.6, Linear polarization, ATF-AE70

REF: Phys. Rev. ST Accel. Beams 18, 060702 (2015)



AE70 experiment in BNL-ATF, 2014yr

BNL-ATF Beam parameters (as of 2014yr):

 CO2 laser: aL ≈ 0.6 to 1.0

(~0.4-0.8 TW, > 3 J), FWHM ≈ 3.5 – 5.0 ps,

10.6 μm, w0 ≈ 40 μm, ZR ≈ 500 μm

 Electron beam: E = 65 - 70 MeV

Q ≈ 0.3 nC, z ≈ 300 μm, x ≈ 30 μm, N ≈ 1 mm mrad,  ≈ a few cm

Compton edge: hν = 42EL ≈ 7 - 10 keV

Photons / pulse: N ≈ 109
(World record )



Observed red-shift (Direct evidence of the figure-8 motion)
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Off-axis component
Red-shifting

to 5-6 keV

Y. Sakai, I. Pogorelsky, O. Williams et. al, Phys. Rev. ST Accel. Beams 18, 060702 (2015)
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Angular distribution of harmonic radiation

(Linear polarization case)

Au L-edge (12 keV)          Al 250 μm > 10 keV Al 1000 μm > 15 keV
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Narrow band 2nd                               2nd + 3rd      3rd (On-axis & lobes)

Y. Sakai, I. Pogorelsky, O. Williams et. al, Phys. Rev. ST Accel. Beams 18, 060702 (2015)

On axis components of 3rd harmonics  Direct evidence of the longitudinal motion



e-beam

ICS of circular polarized laser – OAM X-Gamma ray ?

Linear case:

Spin Laser

e-beam

Nonlinear case

(multi photon process) 2nd, 3rd (OAM?)

1st (circular pol)

Helical motion

Orbital

Angular

Momentum

0

0

vx

evx B/c=vz

B

E

0

2nd, 3rd

NOTE: OAM X-ray can be also generate by FEL &  Linear ICS by OAM laser

Momentum



OAM X-ray generation by non linear ICS

¼ wave plate between regenerative and TW amplifier

Al 250 μm:             Linear, 2nd Elliptical, 2nd Circular, 2nd

Al 1000 μm:                                Linear, 3rd Circularlar, 3rd

Gamma-ray vortices can be generated by only ICS 
{Strong demands in Nuclear Photonics community:

REF Y. Taira, T. Hayakawa, M. Katoh, Scientific Reports volume 7, 5018 (2017)}

 Detailed spectrum distribution needs to be measured at 30 keV range.



Curved multi layer

 Si/Mo, d = 3-4 nm

r = 2.5 m

MCP

screen

Half slit

6 mm Slits
e-beam dump

  by Dipole magnet
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e-beam:

  Ee = 65 MeV

= 3 ps (0.3 nC)

x,y = 20-30 mmCO2 laser:

   a0 = 1

 9.3 mm

   FWHM = 3.5 ps

   w0 = 2x,y = 40-60 mm

I. P.

Off axis parabola

             f#1
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Mo/Si curved Multi-layer 

spectrometer

Mo-Si Multi (45) layer thickness: d ≈ 3.3 nm

 Bragg angle:

~ 25 mrad

Angle acceptance :

~ 50 mrad

 Reflectivity ~ 15% @ NSLS X15A (Z. Zhong)

Y. Kamiya, T. Kumita and P. Siddons et al., X-ray spectrometer for observation of nonlinear Compton scattering,

Proc. Joint 28th Workshop on Quantum Aspects of Beam Physics (World Scientific), 103 (2003)

Details of the ICS X-ray spectrum:

MCP image



Projection of deflected ICS X-ray

in a single shot

Laser energy 1.5 J

Laser energy 1.5 J,

aL = 0.7

Laser energy 3.0 J

aL = 1

Single shot, double differential spectral measurements of inverse Compton scattering in the nonlinear regime, 

Phys. Rev. ST Accel. Beams  (2017), in press



Double Differential Spectrum at a0 = 1

It figured out that Spectrum shape changes

by e-beam & laser spot size:



Analysis: on-axis spectral structure

Temporal effect alone

(Laser > electron)

Electron see only on-axis high intense laser field

Radial effect

(electron > Laser)

Electron see radial variation

𝜅 =
𝜎𝐿
𝜎𝑒

2Scattering

Probability

Factor:

𝑃𝑡 ∆𝜆 ∝
1

∆𝜆𝑚𝑎𝑥
∆𝜆

𝑃𝑟 ∆𝜆 ∝
∆𝜆𝑚𝑎𝑥

∆𝜆

𝜅−1



Numerical example

Beam size effect:
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Approximation:

Radial weight

Ix-ray(r)  aL
2(r) Ne

Ne  ne r dr

Longitudinal effect 

neglected

e= 3 cm >>

ZR = 0.5 mm



Conclusion of on-axis spectrum analysis, BNL-AE70 experiment :

 Spectral shape agrees with model, deduce e ≈ L ≈ 20-30µm

 On-axis emission; Total BW=33% with a0 = 1.

Data and analytical probability model 
Lenard-Wiechert model

(showing interference)



NEXT  Bi-harmonic nonlinear Compton experiment

e



Phys. Rev. ST Accel. Beams Vo. 14, 120702 (2011)

Pulsed waveform modulation of Hard X-ray component

at less than < 10-18 s time scale {A few cycle X-Gamma RAY}
Observation of Red-Blue shifts & hνL,YAG  hνL,CO2

Fourier transform 



So far,

YAG-ICS at hv 87.5 

keV generated

last year:



Experimental plans of AE87

Bi-harmonic Compton

laser optics set up:

Input of CO2 laser and YAG laser are opposite 

CO2 laser final optic has D ½ or ¾ inch hole

OAP for CO2, D4”, fL4”

On-axis hole D3/4”

OAP for YAG,

D2”, fL10”

On-axis hole D1/4”

90deg Mirror for CO2, D3 or 4”,

On-axis hole D1/2“ to 3/4”

OAP for YAG pich up

D1”, On-axis hole D1/2“

CO2 laser IN
YAG laser out

YAG laser out



Return to AE87  Result: Observed attenuation of 87.5 keV Hard X-ray
in a single shot (105-106-7 photons / shot)

Sufficient contrast of radiation pattern of YAG laser ICS observed in a single shot

 No-Filter                                                Au-100mm Au-200mm
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Numerical estimate of bi-harmonic spectrum by ATF parameter (Nonlinear Compton V2)

e (70 MeV)



Only CO2’s component                                                Bi-harmonic YAG’s component

 No-Filter                                              Au-100mm Au-200mm



Single shot DDS measurement

at X-ray energy of 87.5 keV

for quantitative study

 Thick Laue Bent Crystal

Efficiency > Bandwidth

(Collaboration with NSLS II 150 keV section, Z. Zhong)

Multi layer crystal: 5 – 20 keV (CO2’s ICS component)

Thick crystal: 20 keV – 200 keV (YAG’s ICS component)

e

 Radius of curvature R: 2.5 m

 Thickness: 1 mm

 Bragg angle at 85keV:  22 mrad

 Crystal to MCP screen 0.3 m

 Expected dispersion at screen: 10-20 mm:

 Band width:  10 keV

 Reflectivity (Efficiency): 10%

Stats: Diffraction not observed yet, as this is a hard 

experiment as expected
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ICS X-ray energy hv > 80.7 keV ( Au K-edge)

Enhanced does by monochromatic X-ray      

Activation process:

X-ray absorption by Au K-shell



Emission of Auger electron from outer shell (  90% of energy)



Transfer energy to Radicals (OH etc) through water etc

Dose enhancement around surface of AuNP



Required Gold particle size, for escape of electron from NP :

100 nm  Auger, L-edge 11.9-14.3 keV

10 nm  Auger, M-edge 2.2-2.4 keV

Penetration depth of keV electron in water (between AuNP)

 ~ µm range

Spacing between particles 

AuNP Dia 100 nm  10 µm,  AuNP Dia 10 nm  1 µm, 

Because, 100 µm thick Au filter occupy 1% of volume in 1 cm 
thick volume of water.

Application part math:

(In appreciation of observed 87.5 keV characteristic):

Examination of photon Activation

with Gold Nano Particle (AuNP)
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Note: Density of 100 µm thick Au sheet in cubic cm of water of 

square volume corresponds to 194 mg / g uptake. 
(Density of Au and H2O are 19.3 g/cm3 and 0.997 g/cm3 )
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- - Hard X-ray flux requirement math- -

Assuming target dimension of (LI.P. to target 1/)2 = 1 cm3, 

(1 m away from I.P. at 1/ = 10 mrad, at 60-70 MeV electron beam)

Radiation dose per kg of water per shot:

1 [Gy] = 1 J / (10 cm)3] ↔ 1 mJ / (1 cm)3.

While energy per X-ray pulse:

(106-7 photons)  (87.5 keV)  (1.610-19)  ~  0.1 - 1 µJ / shot)



Total irradiation shot required: 1 mJ / 0.1 µJ = 10.000 shot

Flux can be increased by further tight focus down to a several e mm > X10 & YAG laser pulse > 1 J  10

NOTE: But bandwidth will be 10s % range:

𝝎𝑰𝑪𝑺 ≈
𝟒𝜸𝟎

𝟐𝝎𝑳

𝟏+𝜸𝟎
𝟐𝜣𝟐+

𝒂𝟎
𝟐

𝟐

, 𝜸𝟎
𝟐𝜣𝟐 ↔ 𝜸𝟎

𝟐 𝚫𝒑𝒙,𝒚

𝒑𝒛

𝟐

x,y = 20 µm  beta function  = 3 cm  `0.6 mrad  X-ray bandwidth: 1 %

x,y 5 µm  beta function  1 mm  `5 mrad  X-ray bandwidth: 10 %

1/0  7.3 mrad for 70 MeV e-beam, Normalized emittance 2 mm mrad case

{OR, can we lower e-beam emittance more??}

Direction depending on purposes:

 Narrow band X-ray production based on single shot detection

 Less narrow band high flux X-ray production

 Strong field physics for Bi-harmonic & OAM production



University scale test facility

in Westwood L.A., UCLA campus:

Status:

RF conditioning on going now.

IN PARALLEL :         University scale test facility
in Westwood L.A., UCLA campus:

Based on S-band Hybrid gun:
RF gun and a short linac for velocity bunching, 100s fs, in one structure

REF: A. Fukasawa et al., “Progress on the hybrid gun project at UCLA”,
Physics Procedia, vol. 52, pp. 2–6, 2014.

& R & D of Cryo cooled high gradient 200 MV/m, low emittance gun: Emittance ~ 1/ 2

Linear Compton Application: WEST-UCLA

 Nonlinear Compton Study: EAST-BNL



FUTURE PLAN 2022-2024yr

2019 Dece

IN BNL ATF:mber, next week: DONEEnergy measuremnt of Hard X-ray by Au & Pb K-edge

 Set up nonlinear CO2 ICS with upgraded ATF’s multi TW CO2 laser at a02

 Observe higher order harmonics & benchmark a0 & X-ray production per pulse

 Measure 30 keV CO2 ICS X-ray spectrum by thick bent crystal spectrometer

 Single shot DDS measurement by Bent crystal at 100 keV range by YAG ICS

 Measure spectrum of Harmonics by circular polarized CO2 laser (ATF’s Polarization rotator)

 Production of Bi-Harmonic X-ray, A few cycle X-ray pulse

IN UCLA:

 Keep constructing a PBPL-LINAC in Westwood

 Soft X-ray ICS by Ti: Sappire laser, 20 MeV e-beam (Let’s cover all spectrum range)

Conclusion:

Inverse Compton Scattering Study seems to be simple but endless
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