Advanced Accelerator Concepts Workshop 2022 | Hauppage, NY, USA | WG 4

DIRECT MEASUREMENTS OF EMITTANCE GROWTH FROM COULOMB SCATTERING ON NEUTRAL GAS ATOMS IN A PLASMA LENS

Efforts towards quantifying fundamentally limiting factors of plasma-based particle-beam optics

J. Björklund Svensson¹, L. Boulton^{1,2,3}, M. J. Garland¹, C. A. Lindstrøm¹, F. Peña^{1,4}, S. Schröder¹, S. Wesch¹, J. Wood¹, J. Osterhoff¹ and R. D'Arcy¹

¹Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany ²SUPA, Department of Physics, University of Strathclyde, Glasgow, UK ³The Cockcroft Institute, Daresbury, UK ⁴Universität Hamburg, Hamburg, Germany

FLASHFORWARD

Dr. Jonas Björklund Svensson

Research Fellow | FLASHForward Particle Physics Division, FTX-AST Deutsches Elektronen-Synchroton DESY Hamburg, Germany jonas.bjorklund-svensson@desy.de

HELMHOLTZ RESEARCH FOR GRAND CHALLENGES

- > Plasma lenses (PLs) a promising technology
 - > Very strong, axisymmetric focusing
 - > Compact optics (1 PL replaces multiple quadrupoles)
 - > Capture/focus divergent beams close to target
 - > Reduces chromatic emittance growth

- > Active plasma lenses (APLs) shown to preserve beam quality [1] ... \rightarrow
 - > ... under certain conditions
 - > Not necessarily compatible with high-brightness / -luminosity beams
 - > Other limitations not yet quantified

Background

> Unlike in "conventional" accelerators, beam traverses matter

- > Interactions such as Coulomb scattering on
 - > Plasma electrons + ions
 - > Neutral atoms
- > Causes emittance growth depends on beam and gas:

 $\frac{d\epsilon_{\rm n}}{ds} \propto \frac{\beta}{\gamma_{\rm b}} n_0 Z(Z+1)$

> High-Z gases – linear focusing gradients [1] \rightarrow

- > Wake excitation must be suppressed in APLs
 - > Large bunch-plasma mismatch
 - > Low bunch + high plasma density
 - > Low bunch current and large size (far from beam waist)

> When can and can't we use these devices?

[1] C. A. Lindstrøm *et al.*, "Emittance Preservation in an Aberration-Free Active Plasma Lens", Phys. Rev. Lett. **121**, 194801 (2018)

THE STUDY

> Experimental quantification of limitations of APLs for high-brightness beams

- > Wake excitation
- > Scattering
- > Gradient linearity
- > Figures of merit:
 - > Projected beam normalized emittance
 - > Beam optics distortion

Ultimately: *can we expect to use APLs for high-brightness / -luminosity beams?*

Focus of this talk: neutral-gas Coulomb scattering

> Normal parameters for FLASHForward:

> Beam energy: 1 GeV

> Normalized emittance: 2 mm mrad

> Beam size: 150 μ m rms $\rightarrow \beta = 22$ m

> Fit beam inside capillary (1.5 mm diameter) with 5 stdevs

> Gas pressure in 50-mm capillary: 1-15 mbar $\rightarrow n_0 \approx 2 - 40 \times 10^{16} \text{ cm}^{-3}$

> "Regular" multiple-scattering emittance growth

$$\Delta \epsilon_{\rm n} = \frac{4\pi r_{\rm e}^2 n_0 \beta}{\gamma_{\rm b}} L \cdot 1.64 Z(Z+1) \ln \left(\frac{2}{\gamma_{\rm b}}\right)$$

> But wait a second...

- > Estimated emittance growths much larger than seen in [1]
 - > Using parameters from [1], expect ~4 mm mrad growth
 - > Observed emittance growth <0.25 mm mrad at 90 % confidence

> Turns out: far from multiple scattering

$$N_{\rm s} = n_0 \cdot \sigma_{\rm s}^{\rm tot} \cdot L \leq \begin{cases} 1 \\ 0 \end{cases}$$

> Estimated number of scattering events <1 – *not even single-scattering*

> No analytical emittance growth formula for this regime

> Monte Carlo simulations in GEANT4 [2]

(3 (Ar)

 (N_2)

 $0.05 (H_2)$

[2] https://geant4.web.cern.ch/

> Initial bunch:

- > Gaussian transverse profiles
 - > Matching beam parameters from experiment
 - > Close to parameters on p. 5
- > Single-scattering module
- > 1M particles
- > "Cleaned" data full beam larger but more erratic for N_2
 - > Keep particles within 4σ
- > More realistic expectations for the experiment

> Using bunches from the FLASH linac:

- > 890 MeV, 0.5 % fwhm energy spread
- > 115 pC
- > 750 fs fwhm (~100 A peak)
- > 1.75 mm mrad
- > Beam optics at lens relevant for APL use:
 - > $\beta_0 \approx 17$ m (same as 41 cm away from 10-mm waist)
- "Repurposed" accelerating cell as APL
 Sapphire HV discharge capillary
 50 mm long, 1.5 mm diameter

[3] C. A. Lindstrøm *et al.*, "Energy-Spread Preservation and High Efficiency in a Plasma-Wakefield Accelerator", Phys. Rev. Lett. **126**, 014801 (2021)

> Emittance measurements through quad scans

> Scanned gas densities for argon, nitrogen and hydrogen

- > Neutral gas
- > Capillary gas pressures in 1-15 mbar range

> Limited by discharge (lower) and vacuum pumps (upper)

- > Emittance trends similar to simulations, but...
 - > Small max values particularly for argon
 - > Several data points shows emittance *de*-crease

> Why this discrepancy?

EXPERIMENTAL RESULTS

Some potential sources of emittance decrease

> Machine drifts

> Affect reference optics (more) and emittances (less)

> Charge loss through beamline

> Scraping removes outliers

> Smaller measured RMS size

> Detector limitations

> Wings in distribution potentially "hidden"

> Assuming charge loss is main contributor

> Model charge loss to learn more

COMPARISON WITH SIMULATIONS, PART ${\sf II}$

- > Virtual emittance measurements
 - > Particle tracking from PL exit to screen using OCELOT [4]
 - > *Full* GEANT4-beams from argon scattering as input
- > Fit emittance equal to particle emittance
 - > Good measure of emittance at screen
 - > ... but not good measurement of the original!
- > Large emittance decrease during propagation
 - > Highest-emittance beams decrease most
 - > Less charge loss than experiment
 - > Not yet good match with vertical optics

[4] S. Tomin *et al.*, "OCELOT as a framework for beam dynamics simulations of X-ray sources", in Proc. of IPAC'17, p. 2642 (2017) <u>https://github.com/ocelot-collab/ocelot</u>

> Measurement flawed but still gives insight

- > Short devices and low gas densities *not in multiple-scattering regime*!
 - > Smaller emittance growth than analytic theory
 - > Still simulations suggest noticeable increase even for low gas densities
 - > Lower limit on gas density: *discharge must work*
- > So: does this rule out using APLs for high-brightness / -luminosity beams?
 - > Not quite circumstances matter
 - > Many things still unknown
 - > E.g. scattering contribution *during* discharge
 - > Electrons, ions, near-neutrals (i.e. Ar²⁺), ...

OUTLOOK

> More to come

- > Refinement of experiment
 - > Upgraded experimental setup larger beam pipes
 - > Upgraded diagnostics measure both transverse planes
- > Take care not to lose *any* charge
 - > Careful optics setup
- > Extended simulations of scattering and transport
 - > More particles = 'more better'
 - > Model vertical optics more accurately
 - > If necessary include measured magnet misalignments, etc.

Thanks for your attention!

Questions, comments, ...