20th Advanced Accelerator Concepts Workshop

Contribution ID: 260

Type: Contributed Poster

Generation and optimization of high quality multi-GeV electron beams using an evolving electron driver in the nonlinear blowout regime

Tuesday, November 8, 2022 5:00 PM (2h 30m)

Plasma-based acceleration (PBA) is a promising approach for generating high quality ultrarelativistic beams to drive next-generation x-ray light sources and particle collider experiments. Over the years, research has largely focused on injection methods that use a density down ramp or field ionization to generate such beams. Recently, we proposed and demonstrated new methods of controllable injection that use evolving electron drivers to excite nonlinear plasma wakefields [1,2]. In the first method, wake expansion and injection are triggered by focusing the electron driver in the nonlinear blowout regime [1]. We describe the physics of this process and present a predictive model to characterize injection in the self-focusing regime. The model is used to describe how the wake evolution and final injected beam parameters scale with the driver parameters. Parameter scans of particle-in-cell (PIC) simulations using OSIRIS are presented and compared with the model predictions for different driver parameters. In the second method, high quality beams are generated utilizing a "flying focus" produced by a drive beam with an energy chirp [2]. The evolution of the wake is determined by the speed of the density centroid, which can be superluminal or subluminal. Using PIC simulations, we demonstrate that a wake driven by a superluminally propagating flying focus of an electron beam can trigger injection. Simulation results indicate that GeV-class electron bunches with high normalized brightnesses (> 10^{19} A/m²/rad²) and low projected energy spreads (< 1%) can be produced using both methods.

T. N. Dalichaouch et al., Phys. Rev. Accel. Beams 23, 021304 (2020).
F. Li et al., Phys. Rev. Lett. 128, 174803 (2022).

Acknowledgments

This work was supported by US DOE through Grant No. DE-SC-0010064 and FNAL Subcontract No. 644405, and NSF Grant No. 2108970

Primary authors: DALICHAOUCH, Thamine (UCLA); Dr LI, Fei (UCLA); Dr XU, Xinlu (Peking University); Prof. TSUNG, Frank (UCLA); MORI, Warren (UCLA)

Presenter: DALICHAOUCH, Thamine (UCLA)

Session Classification: Poster Session and Reception

Track Classification: Poster Session: WG4 Poster: Beam-Driven Acceleration