20th Advanced Accelerator Concepts Workshop

Contribution ID: 90 Type: Contributed Oral

High-efficiency and high-quality laser-plasma accelerator stages for a plasma-based linear collider

Wednesday, 9 November 2022 13:30 (20 minutes)

The viability of next generation plasma-based linear colliders relies on the possibility of accelerating high-charge and low-emittance bunches to high energies over short distances with high efficiency, while keeping a small relative energy spread. Laser-plasma accelerators (LPAs) can operate in different regimes, namely, linear (or mildly nonlinear) stages, where laser guiding is achieved by means of an external waveguide such as a plasma channel, or nonlinear stages where the laser is self-guided through the plasma by means of relativistic self-focusing and plasma wave guiding. For the same laser driver energy, channel-guided and self-guided LPA stages are characterized by different accelerating gradients, lengths, optimal bunch parameters, and acceleration efficiencies. In this talk we present a systematic investigation of the properties of channel-guided and self-guided LPAs with fixed laser energy, and we discuss a self-guided LPA stage operating in the nonlinear regime providing high-gradient, high-efficiency, and quality-preserving acceleration of electron beams for collider applications.

Acknowledgments

Work supported by the Director, Office of Science, Office of High Energy Physics, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.

Primary authors: BENEDETTI, Carlo (LBNL); TERZANI, Davide (LBNL); BULANOV, Stepan (LBNL); SCHROEDER,

Carl (LBNL); Dr ESAREY, Eric (Lawrence Berkeley National Laboratory)

Presenter: BENEDETTI, Carlo (LBNL)

Session Classification: WGs 1+8 Joint Session

Track Classification: Working Group Parallel Sessions: WG1 Oral: Laser-Plasma Wakefield Acceler-

ation