

Investigating transverse trapping conditions in Beam-Induced Ionization Injection in PWFAs

Jiayang Yan, Xuan Zhang, Derek Teaney, Navid Vafaei-Najafabadi Stony Brook University

AAC 2022

Content

- Introduction
- Simulation Tool
- Ionization Control: Beam Envelope Evolution
- Injection Control:
 - Beam Injection in the Longitudinal Space
 - Transverse Phase Space and Emittance
- Summary

Beam-Induced Ionization injection (B-III)

Introduction

· Beam-slice envelope is determined by the betatron equation,

$$\frac{d^2\sigma_r(z)}{dz^2} + K_\beta^2\sigma_r(z) - \frac{\epsilon_N^2}{\gamma^2\sigma_r^3(z)} = 0$$

- When the transverse size of a beam slice is reduced to its minimum (known as pinch), its transverse field increases and if it exceeds the ionization threshold of the high-ionization-threshold impurity, electrons are released at the pinch.
- If the trapping condition is satisfied, the ionized electrons can be trapped at the back of the bubble
- Our goal is to get a controllable ultrashort injected electron beam using B-III method

3

Simulation Tools

Introduction

Simulation Tool

 A 2D Particle-In-Cell (PIC) simulation is run using OSIRIS in cylindrical coordinate. In the simulation, a preionized hydrogen plasma is used to form the wakefield.

H ₂ Plasma	Density n_0	$5 \times 10^{16} cm^{-3}$
	Ramp length	1 mm
	Plateau length	5 cm
	Ionization status	pre-ionized
Driver	Charge density n _b	0.4n ₀
	Energy	10 GeV
	Transverse beam size σ_r	35.55 μm
	Longitudinal beam size σ_z	23.7µm
	Emittance	10 mm mrad

To save the computation resource, simulation code (eTracks) was developed to

- •Track arbitrarily released electron trajectories in the electromagnetic field provided by one frame of the PIC simulation.
- •Determine the ionization region for a certain impurity component/profile using ADK model.
- Calculate the profile of injected electrons.

The performance was checked by comparing eTracks trajectory with OSIRIS trajectory*

Beam Envelope Evolution

Introduction

Simulation Tool

Ionization

Analytical solution to the beam slice evolution

J. Yan, et al., arXiv:2107.00119 (2020)

Beam Injection in the Longitudinal Space

Introduction

Simulation Tool

Ionization Control

Injection Control

- Due to the ionization control, the injection happens only in a small number of time steps
- A portion of ionized electrons are trapped.
- For trapped electrons, the injection volume is much smaller than the ionization volume leading to ultrashort electron beam
 - Compression factor χ $\frac{1}{\chi} = \frac{\Delta \xi_f}{\Delta \xi_i} = \frac{\frac{\Delta \xi_f}{\Delta \psi_f}}{\frac{\Delta \xi_i}{\Delta \psi_f}} = -\frac{\partial_{\xi} \psi_i}{\partial_{\xi} \psi_f}$

• The injected beam is further compressed if electrons are ionized in small Ezi

Trapping Mechanism and Critical Particle

Transverse Motion

W. Lu et al, Physics of Plasmas 13, 056709 (2006)

Jiayang Yan

Transverse Hamiltonian

$$\begin{aligned} \boldsymbol{\xi}\text{-dependent Transverse Hamiltonian} \\ H_r(r,p_r,\xi) &= -\underbrace{\frac{1}{2}\frac{1+p_r^2}{H_0+\psi}}_{\frac{1}{2}(r+p_z)} \cdot \frac{r^2}{4}(\frac{1}{2}+\psi_0'') + \lambda_0(\xi)\ln(|r|) \\ &\quad \frac{1}{2}(\gamma+p_z) \end{aligned}$$

SOUNY BROOK

Transverse phase space description

Ellipses in pr-r space at injection

Normalized Emittance

$$\frac{p_r^2}{2\gamma(H_0 + \psi_0) - 1} + \frac{r^2}{4(H_0 + \psi_0) - \frac{2}{\gamma}} = 1$$
$$H_0 = 1 - \psi_{0_i} + \frac{r_i^2}{4}$$

At the trapping position $\psi_0 = \psi_{0_f}$

$$H_0 + \psi_{0_f} = 1 + \psi_{0_f} - \psi_{0_i} + \frac{r_i^2}{4}$$

In the beam driver case

$$\epsilon \sim 2\sqrt{2}\pi\sqrt{\gamma}(1+\psi_{0_i}-\psi_{0_i}+\frac{r_i^2}{4}) \sim 8$$

One cycle in transverse phase space

Introduction

Simulation Tool

Summary

Ionization Control

Injection Control

- To get a controllable high-quality injected electron beam using B-III method:
 - ☑ We have developed a simple and accurate tool to track the particle motion inside a given wakefield
 - We have analytically solved the beam slice oscillation equation in the wake field, which helps us understand the ionization process
 - ☑ We understand how to control the beam quality
- We are working on understand critical transverse trapping condition from the aspects of Hamiltonian formalism.

Acknowledgment

We acknowledge the support by U.S. Department of Energy, Office of High Energy Physics (HEP) program under Award No. DE-SC-0014043 and resources of NERSC facility, operated under Contract No. DE-AC02-5CH11231 We also acknowledge fruitful discussions with Dr. Ligia Diana Amorim and Dr. Spencer J. Gessner.

osiris framework

Massivelly Parallel, Fully Relativistic Particle-in-Cell (PIC) Code Visualization and Data Analysis

Infrastructure

- Developed by the osiris consortium
 - \Rightarrow UCLA + IST

Ricardo Fonseca: <u>ricardo.fonseca@tecnico.ulisboa.pt</u> Frank Tsung: <u>tsung@physics.ucla.edu</u>

http://epp.tecnico.ulisboa.pt/ http://plasmasim.physics.ucla.edu/

code features

- Scalability to \sim 1.6 M cores
- SIMD hardware optimized
- Parallel I/O
- Dynamic Load Balancing
- QED module
- Particle merging
- GPGPU support
- Xeon Phi Support

Thank you!

Backup slides

Beam Envelope Evolution

The beam slice evolution with acceleration

Propagation distance z

J. Yan, et al., arXiv:2107.00119 (2020)

AAC22- W4