20th Advanced Accelerator Concepts Workshop

Contribution ID: 197 Type: Contributed Oral

Wakefield Acceleration in Nanostructures: The E336 Experiment at FACET-II

Monday, 7 November 2022 14:45 (15 minutes)

When a high intensity electron beam is passed through a structured nano target, the solid-state density plasma created can support ultra-high accelerating gradients, on the order of 1-10 TeV/m. The similarly strong transverse focusing fields are expected to produce beams with small equilibrium emittance. Driving these extreme wakefields in the self-modulated regime requires high energy and high-density electron bunches. Such bunches are now within reach at the FACET-II facility at SLAC National Accelerator Laboratory. The E336 experiment at FACET-II is a proof of principle experiment that will utilize the high-density electron beams produced by the facility to demonstrate the unique processes expected to occur in structured solid targets. We discuss the motivation, status, and future plans for the experiment.

Acknowledgments

Primary authors: ARINIELLO, Robert (SLAC National Accelerator Laboratory); Prof. CORDE, Sebastien (LOA, ENSTA Paris, CNRS, Ecole Polytechnique, 15 Institut Polytechnique de Paris, 91762 Palaiseau, France); DAVOINE, Xavier; EKERFELT, Henrik (SLAC National Accelerator Laboratory); FIUZA, Frederico; Dr GILLJOHANN, Max (LOA, ENSTA Paris, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris); GREMILLET, Laurent; Ms MANKOVSKA, Yuliia (LOA, ENSTA Paris, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris); PIEKARZ, Henryk; Dr SAN MIGUEL CLAVERIA, Pablo (LOA, ENSTA Paris, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris); SHILTSEV, Vladimir (Fermilab); Prof. TABOREK, Peter (University of California Irvine); TAJIMA, Toshiki

Presenter: ARINIELLO, Robert (SLAC National Accelerator Laboratory)

Session Classification: WG4: Beam-Driven Acceleration

Track Classification: Working Group Parallel Sessions: WG4 Oral: Beam-Driven Acceleration