Wakefield Acceleration in Nanostructures: The E336 Experiment at FACET-II

Advanced Accelerator Concepts Workshop

November 7-11, 2022

Robert Ariniello on behalf ` of the E336 collaboration

Why go to solid materials? Scaling of the wakefields

- The accelerating field in a wakefield accelerator scales as $E[{
 m GV/m}] = m_e \omega_p c/e \approx 100 \sqrt{n_0 [10^{18} {
 m cm}^{-3}]}.$
- Most PWFA/LWFA is done in ionized gas plasma sources at densities much less than atmospheric
- Solids are 4-5 orders of magnitude more dense
- Drive a wake in a solid density plasma, get 2 orders of magnitude stronger fields than an LWFA

Solid density wakefield accelerators could produce fields of 10 TV/m.

The requirement for a nanostructure

- At solid densities, scattering from plasma ions becomes significant
- Leads to rapid pitch angle diffusion and particles escaping the wake

Acceleration in in a nanostructure (crystal or carbon nanotube) limits scattering off the solid's ions.

Self modulation of the electron beam

• Size of the wake scales as

$$\lambda_p = 2\pi \frac{c}{\omega_p}$$

- Driver needs to have spatial scale on the order of the wake scale
- For solid densities, this is difficult to achieve with current facilities

Self modulation of the electron beam

Size of the wake scales as

 $\lambda_p = 2\pi \frac{c}{\omega_p}$

Driver needs to have spatial scale on the order of the wake scale

Self modulation of the electron beam

• Size of the wake scales as

 $\lambda_p = 2\pi \frac{c}{\omega_p}$

- Driver needs to have spatial scale on the order of the wake scale
- For solid densities, this is difficult to achieve with current facilities

 $10^{23} cm^{-3} - 100 \text{ nm}$

1 um

 $10^{22} cm^{-3}$

 $10^{21} cm^{-3}$

The E336 experiment at FACET-II

- Need a proof-of-principle experiment to demonstrate the phenomenon
- FACET-II has sufficiently high beam current to excite wakes in nanostructures
 - To efficiently excite wakefields, the beam density needs to approach the plasma density

Scientific goals:

- Proof-of-principle experiment demonstrate the feasibility of the study of beam-nanotarget interaction and of beam-induced wakefields in nanotargets
- Observation of electron beam nano-modulation
- Observation of betatron X-ray radiation
- Confirmation of simulation models

E336 is a proof-of-principle experiment. Demonstrate that the interaction can be observed and benchmark simulations.

- FACET-II can deliver electrons:
 - 2 nC bunches
 - 10 GeV
 - >50 kA peak current

Diagnostics and observables

Simulation campaign

- 2D PIC simulations of a 5x5x5um beam (2 nC, 10 GeV)
- 200nm tubes in silica
- Plasma ionized by beam self fields

PIC simulation campaign to explore how tube/beam parameters effect interaction. For details see Alexander Knetsch simulation talk in WG3, 16:30 Nov. 8

Initial progress

- 1 mm thick, 6 micron-diameter nanotubes in lead glass
- Radiaton monitor downstream drop tells how quickly the target is being damaged/drilled
- Initial damage tests carried on nanotargets

Damage observed, but targets relatively robust: 15% decrease in radiation in 9000 shots

Radiation monitor

AAC, November 7-11, 2022

R. Ariniello Wakefield Acceleration in Nanostructures: The E336 Experiment at FACET-II

Future plans – aligning the beam to the structure

- 2D simulations in Alumina with 2um tubes, 5x5x5um beam ۲
- The beam is kicked when the target is tilted ۲
- A way to do beam based fine angular alignment ۲

The beam gets a transverse kick when misaligned to the structure. Signature of beam-nanotarget interaction.

Future plans – more divergence than amorphous

• Expect larger divergence than amorphous due to microbunching.

Future plans – more divergence than amorphous

Expect larger divergence than amorphous due to micorbunching.

SLAC

- Larger transverse kicks in larger tubes
- More particles interact in smaller tubes

1 mrad

30

40

Summary and future extensions

- Plasma wakefield acceleration at solid densities has the potential to produce TV/m fields
- Nanostructures are required to limit the beam ion scattering
 - Also naturally channel the beam leading to small natural emittances
- Driving the wake requires a beam with spatial scales on the order of λ_p
- Can experimentally explore the physics with current facilities by taking advantage of self modulation
- E336 experiment aims to detect evidence of nanostructure induced in the beam
 - Study dependence of the interaction and beam and target parameters

Possible future research directions:

- Use transversely sub-micron electron beams to drive the acceleration
 - Use a thin plasma lens to focus the FACET-II beam
 - Use an ultrahigh brightness beam produced by on of the proposed injection schemes

The E336 collaboration

Collaboration and institutions

- IP Paris/LOA: Sébastien Corde, Max Gilljohann, Yuliia Mankovska, Pablo San Miguel Claveria, and Alexander Knetsch
- UC Irvine: Peter Taborek and Toshiki Tajima
- Fermilab: Henryk Piekarz and Vladimir Shiltsev
- SLAC: Robert Ariniello, Henrik Ekerfelt, Mark Hogan, and Doug Storey
- CEA: Xavier Davoine and Laurent Gremillet
- IST: Bertrand Martinez
- INFN: Alexei Sytov and Laura Bandiera

Publications

 White paper for Snowmass in AF6 Advanced Accelerator Concepts
 [1] arXiv:2203.07459

Channeling Acceleration in Crystals and Nanostructures and Studies of Solid Plasmas: New Opportunities

Robert Ariniello¹, Sebastien Corde², Xavier Davoine³, Henrik Ekerfelt⁴, Frederico Fiuza⁴, Max Gilljohann², Laurent Gremillet³, Yuliia Mankovska², Henryk Piekarz⁵, Pablo San Miguel Claveria², Vladimir Shiltsev⁵, Peter Taborek⁶, and Toshiki Tajima⁶

See Alexander Knetsch simulation talk in WG3, 16:30 Nov. 8

Questions?

Advanced Accelerator Concepts Workshop

November 7-11, 2022

Beam self fields: ionization and screening

- 2D PIC simulations of a 5x5x5um beam
- 2000nm tubes in alumina
- Plasma ionized by beam self fields

- Beam self fields are intense enough to ionize bulk material
- As material starts to ionize, plasma electrons screen self fields
- Overall effect is several percent level ionization

Beam requirements

• E336 benefits from the high bunch densities and small emittances.

- The charge per tube scales as Q/σ_r^2 (area charge density) and the scale of the transverse force on the beam particles scales as $n_b d$ (with d as the nanotube diameter).

- The emittance acts against beam transverse modulation, with an effective force in the envelope equation going as ϵ_n^2/d^3 , which must be small compared to the force from the nanotube plasma.

Example: for $d=0.3\mu m$ and $10\mu m$ transverse beam size, 50 kA and 5 mm.mrad the modulation is strong, 20 kA and 20 mm.mrad it will not be detectable.

Max gradient for the transverse force for long bunch in plasma:
$$g_{\max}^{\log} = -\frac{eNc\mu_0}{2\sqrt{2\pi^3}\sigma_r^2\sigma_z}\chi(k_p\sigma_r).$$
 (arXiv:1802.02750)
Transverse wakefield: $W_{\perp} \propto \frac{Q(d^2/\sigma_r^2)}{d^3}\frac{d}{\sigma_z} \propto n_b$

Applications of such acceleration techniques

- High gradient has the potential to reach multiple TeV energies in a single stage
 - Drive with intense x-rays pulses coupled in from the side
 - A km long fiber as the acceleration medium
 - High energy physics applications of the technique
- High gradient and continuous focusing produce small emittances
 - In a crystal, channel sizes on the order of angstroms could produce extreme emittances

