

he Cockcroft Institute

Towards a soft x-ray PWFA-FEL via Trojan Horse single bunch injection

Lily Berman, Ahmad Fahim Habib, Andrew Sutherland, Thomas Heinemann, David Campbell, Alex Dickson, Grace Manahan, Adam Hewitt, Bernhard Hidding, 7/11/2022 AAC 2022

Motivation: shrink XFEL footprint Linac Acceleration Transport Undulators

kilometre scale

Wakefield Acceleration 10s of metres

First experimental demonstrations towards plasma-based FELs:

- Exponential gain at 27 nm (XUV) with LWFA- Wang, W., Feng, K., Ke, L. et al. Free-electron lasing at 27 nanometres based on a laser wakefield accelerator. Nature 595, 516–520 (2021)
- Exponential gain at 830 nm (IR) with PWFA Pompili, R., Alesini, D., Anania, M.P. *et al.* Free-electron lasing with compact beam-driven plasma wakefield accelerator. *Nature* 605, 659–662 (2022)
- Gain in seeded FEL at 270 nm (UV) with LWFA Labat M, Cadabag JC, Ghaith A, et al. Seeded free-electron laser driven by a compact laser plasma accelerator. Research Square; 2022 (PREPRINT)

Ultimate goal: PWFA-XFEL with comparable performance to linac facilities

University of

Glasgow

Strathclyde

Challenges of PWFA-XFEL

- Need excellent beam quality low emittance, high current, low energy spread
- Requirements more severe as target wavelength decreases
- PWFA beams naturally chirped resulting energy spread unacceptable for XFEL

1. Diffraction criterion

 $Z_R \geq 2 L_{1D}$

Chirp suppression with Trojan Horse injection

- Low-charge regime (few pC): few 10s nm rad emittance + 0.01% level energy spread possible
 <u>multibunch</u> approach required for dechirping (G.G. Manahan et al., Nat Com 2017)
- Chirp suppression with <u>single bunch</u> of higher charge via beam-loading - locally flatten field
- Achievable using planned E310 setup in collinear configuration
- Optimisation of bunch properties:
 - / Increased peak current
 - / Reduced projected energy spread
 - X Increased emittance due to space charge

Beam-loading

Aim to inject charge for optimum loading - i.e. field is flattened. Loading depends on witness charge density

Analytical models^{*} - estimate the charge density needed for beam-loading \rightarrow **Optimum peak witness charge density** ~ **1e19 /cm**³

*A. A. Golovanov, I. Yu. Kostyukov, J. Thomas, and A. Pukhov, "Analytic model for electromagnetic fields in the bubble regime of plasma wakefield in non-uniform plasmas," *Physics of Plasmas*, vol. 24, no. 10, p. 103104, Oct. 2017

*A. A. Golovanov, I. Y. Kostyukov, A. M. Pukhov, and J. Thomas, "Generalised model of a sheath of a plasma bubble excited by a short laser pulse or by a relativistic electron bunch in transversely inhomogeneous plasma," *Quantum Electron.*, vol. 46, no. 4, pp. 295–298, Apr. 2016

Beam-loading

Aim to inject charge for optimum loading - i.e. field is flattened. Loading at a given wakefield strength and plasma density depends on witness charge density

Use PIC simulations for increased accuracy - witness bunch (orange) loaded in as external Gaussian

beam with fixed dimensions and charge is varied Optimum peak witness charge density ~ 0.4-0.5 e19 /cm³ For likely witness dimensions, $Q_w < 100 \text{ pC}$

Baseline parameters: 250 μm blowout, driver 10 GeV + 1.5 nC, H/He gas mix

7/11/2022 AAC 2022

Tuning released charge via plasma photocathode

4 degrees of freedom with which to tune injected charge:

- Photocathode laser amplitude **a**₀
- Photocathode laser waist w_0
- Photocathode laser pulse duration τ_0
- HIT gas density **n_{HIT}**

Initial simulation results

- Initial scan of witness charge via increasing HIT density at medium resolution and 200 um plasma wavelength
- Allows likely witness properties to be examined
- Resolving beam loading requires increased resolution and significantly increased computational resources
- Initial results show that it should be possible to inject a bunch capable of sufficient beam loading that maintains < 300 nm rad emittance and > 5kA peak current

Initial simulation results

Increased resolution to resolve beam-loading:

- First high resolution simulations at target 250 um plasma wavelength have demonstrated witness injection leading to beam-loading near optimum
- At 10 % of target energy (i.e. 100 MeV) witness properties as follows:
 - Charge = 63 pC
 - Peak current = 3.2 kA
 - Projected emittance = 136 nm rad
 - Projected energy spread = 1.19 %
 - Slice energy spread 0.3 %
- At full energy slice and projected energy spread should be further reduced, and emittance slightly increased

University of

Strathclyde

Application to soft XFEL

The Xie parametrisation can be used to examine the prospects for a witness bunch with 5 kA peak current, 300 nm rad emittance, < 0.2 % slice energy spread and negligible chirp. Such a bunch should allow most of the soft x-ray regime to be accessed.

Next steps

- Progress 250 um plasma wavelength simulations at high resolution to target beam energy of 1 GeV
- Scan photocathode laser parameters and determine effect on beam properties
- Choose optimum working point minimised energy spread, maximised current
- Start-to-end simulations of soft x-ray production
- Demonstrate beam-loading experimentally eith **E310 collinear setup**
- Accepted proposal at FACET-II, to be carried out experimentally subsequent to successful injection at E310 - E313: Multibunch dechirper for ultrahigh 6D brightness beams. Aims to demonstrate chirp removal of low-charge witness bunches while maintaining 10s nm rad emittance and 0.01% level energy spread

Summary and outlook

- Trojan Horse could have the potential to produce beams in the 'high charge' regime (10s pC) with multi-kA current, few 100 nm rad emittance and few 0.1 % slice energy spread using chirp-suppression via beam-loading
- Such beams should have sufficient quality to produce XFEL radiation in the soft x-ray region. This will be the subject of upcoming start-to-end simulations
- Beam-loading with Trojan Horse could be demonstrated using the planned E310 setup in collinear geometry simply by changing photocathode laser parameters and gas density