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single stage!

Self-modulation!
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Goals:

 Study SM of the p+ bunch

 Study e- bunch acceleration (with av. field 1 GV/m)

 External injection

 Bunch quality preservation at 10mm-mrad

 Scalability (two stages – modulator and accelerator)

 First HEP application → fixed target experiment
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e- and p+ bunches misaligned
force on p+  bunch centroid ≠ 0 → hosing
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           one plane      plane  hosing⟂
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● Hosing occurs in the plane of misalignment 

● eSSM → plane ⟂ hosing

● Hosing and eSSM caused by the same wakefields →

● Both processes are reproducible
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 Hosing is detrimental for acceleration 
process → 

  Important to study for the future PWFA →

  Know how to suppress

  Many studies on suppression 

Figure: Initial centroid (black) and average transverse
force (blue) for three different seed wavenumbers, obtained
from 2D OSIRIS simulations at z = 0.
 M. Moreira, P. Muggli, J. Vieira, arXiv: 2207.14763v1 (2022)

Figure: Beam breakup due to hosing growth in nonlinear blowout regime.
J. Vieira, W. Mori, P. Muggli, Phys. Rev. Lett. 112, 205001 (2014)
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