

Hosing of a long relativistic particle bunch induced by an electron bunch

T. Nechaeva¹, L. Verra², J. Pucek¹, M. Bergamaschi¹, L. Ranc¹, G. Zevi Della Porta^{1,2} and P. Muggli¹ on behalf of the AWAKE Collaboration

¹Max-Planck-Institute for Physics, Munich, Germany ²CERN, Geneva, Switzerland

tatiana.nechaeva@cern.ch

AAC Workshop, Nov. 6 - Nov. 11, 2022

$$E_{WB} = \frac{m_e c \,\omega_{pe}}{e} \propto \sqrt{n_{pe}}$$

- Initial transverse wakefields \rightarrow
- Periodic focusing/defocusing force \rightarrow

Self-Modulation Long driver (over)dense plasma τ_{pe} p⁺ bunch defocused focused

- Initial transverse wakefields \rightarrow
- Periodic focusing/defocusing force \rightarrow

- Bunch density modulation \rightarrow
- Train of micro-bunches \rightarrow period ~ τ_{pe}
- Micro-bunch length < $\tau_{pe} \rightarrow$

Self-Modulation Long driver (over)dense plasma τ_{pe} p⁺ bunch defocused focused

- Initial transverse wakefields \rightarrow
- Periodic focusing/defocusing force \rightarrow

- Bunch density modulation \rightarrow
- Train of micro-bunches \rightarrow period ~ τ_{pe}
- Micro-bunch length < $\tau_{pe} \rightarrow$
- Resonant driving of large amplitude wakefields

AWAKE Experiment

- Bunch quality preservation at 10mm-mrad
- Scalability (two stages modulator and accelerator)
- First HEP application → fixed target experiment

eSSM vs eSSM+Hosing

 e^{-} and p^{+} bunches aligned force on p^{+} bunch centroid = 0 force on p^{+} bunch slice \rightarrow focusing/defocusing

eSSM vs eSSM+Hosing

eSSM

Hosing + eSSM

one plane plane \perp hosing

eSSM vs eSSM+Hosing

Hosing + eSSM

plane \perp hosing

one plane

eSSM

- Hosing occurs in the plane of misalignment
- eSSM \rightarrow plane \perp hosing
- \bullet Hosing and eSSM caused by the same wakefields $\ {\scriptstyle \rightarrow}$
- Both processes are reproducible

5

Hosing in PWFA

- Hosing is detrimental for acceleration process →
- Important to study for the future PWFA $_{\rightarrow}$
- Know how to suppress
- Many studies on suppression

PRL 112, 205001 (2014)	PHYSICAL	REVIEW	LETTERS	week ending 23 MAY 2014	

Hosing Instability Suppression in Self-Modulated Plasma Wakefields

J. Vieira,^{1,3,*} W. B. Mori,² and P. Muggli³ ¹GoLP/Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal ²Department of Physics and Astronomy, University of California Los Angeles, California 90095, USA ³Max-Plank-Institut für Physik, 80805 München, Germany (Received 13 December 2013; published 21 May 2014)

Figure: Beam breakup due to hosing growth in nonlinear blowout regime. J. Vieira, W. Mori, P. Muggli, Phys. Rev. Lett. **112**, 205001 (2014)

Mitigation of the onset of hosing in the linear regime through plasma frequency detuning

Figure: Initial centroid (black) and average transverse force (blue) for three different seed wavenumbers, obtained from 2D OSIRIS simulations at z = 0. M. Moreira, P. Muggli, J. Vieira, arXiv: 2207.14763v1 (2022)

Towards experimental investigation of hosing instability mitigation at the PITZ facility

G Loisch et al 2020 J. Phys.: Conf. Ser. 1596 012003

PHYSICAL REVIEW LETTERS 121, 264802 (2018)

Suppression of Beam Hosing in Plasma Accelerators with Ion Motion

T. J. Mehrling,^{*} C. Benedetti, C. B. Schroeder, E. Esarey, and W. P. Leemans Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA

Results preliminary

mm)

x (mm

Results Images – averages of ~10 events preliminary

Frequency analysis prelimina:

 $n_{pe} \sim 0.96*10^{14} \text{ cm}^{-3}$ $f_{pe} \sim 87.9 \text{ GHz}$

n_{pe} ~ 2.03*10¹⁴ cm⁻³ f_{pe} ~ 127.8 GHz

Frequency analysis prelimina;

n_{pe} ~ 0.96*10¹⁴ cm⁻³ f_{pe} ~ 87.9 GHz

 $n_{pe} \sim 2.03*10^{14} \text{ cm}^{-3}$ $f_{pe} \sim 127.8 \text{ GHz}$

Amplitude of oscillations vs p+ bunch charge

$$x_{c} = \delta_{c} \frac{e^{N_{h}}}{N_{h}^{1/2}} \frac{3^{1/4}}{(8\pi)^{1/2}} \cos(\pi/12 - k_{p}\xi - N_{h}/\sqrt{3}) *$$

$$\delta_{c} = f(e^{-} \text{ parameters}) - \text{ initial amplitude}$$

$$N_{h} = f(p^{+} \text{ parameters}) - \text{ growth rate}$$

Amplitude of oscillations vs p+ bunch charge preliminary $x_{c} = \delta_{c} \frac{e^{N_{h}}}{N_{h}^{1/2}} \frac{3^{1/4}}{(8\pi)^{1/2}} \cos\left(\pi/12 - k_{p}\xi - N_{h}/\sqrt{3}\right)^{*}$

 $\delta_c = f(e^- \text{ parameters}) - initial amplitude}$ $N_h = f(p^+ parameters) - growth rate$

- Linear theory:
- $N_h = f(n_b)$

 $n_p = f(Q_p)$: Q_p increases $\rightarrow n_p$ increases

Amplitude of oscillations vs p+ bunch charge preliminary $x_c = \delta_c \frac{e^N}{m!}$

 $x_{c} = \delta_{c} \frac{e^{N_{h}}}{N_{h}^{1/2}} \frac{3^{1/4}}{(8\pi)^{1/2}} \cos(\pi/12 - k_{p}\xi - N_{h}/\sqrt{3}) *$ $\delta_{c} = f(e^{-} \text{ parameters}) - \text{ initial amplitude}$ $N_{h} = f(p^{+} \text{ parameters}) - \text{ growth rate}$

 $N_h = f(n_b)$

 $n_p = f(Q_p)$: Q_p increases $\rightarrow n_p$ increases

Amplitude of oscillations vs p+ bunch charge preliminary

 $x_{c} = \delta_{c} \frac{e^{N_{h}}}{N_{h}^{1/2}} \frac{3^{1/4}}{(8\pi)^{1/2}} \cos(\pi/12 - k_{p}\xi - N_{h}/\sqrt{3}) *$ $\delta_c = f(e^- \text{ parameters}) - initial amplitude}$ $N_h = f(p^+ parameters) - growth rate$

Linear theory:

 Q_p increases $\rightarrow n_p$ increases

 Q_p increases $\rightarrow A_c$ increases

Amplitude of oscillations vs misalignment extent

12

•

* C. Schroeder, Phys. Rev. E 86, 026402 (2012)

Conclusion and outlook

- Understanding hosing is important for PWFA (LWFA)
- Hosing @ AWAKE: can occur in the 1st stage \rightarrow might grow further in the 2nd stage \rightarrow
- Study hosing \rightarrow know how to suppress it
- Preliminary study of hosing:
 - Induced by e⁻ bunch (wakefields) misalignment
 - At fpe
 - Occurs at the same time as eSSM (in \perp planes)
 - Hosing and eSSM caused by the same wakefields \rightarrow reproducible
 - Direction reverses with direction of misalignment
 - Observed growth along the bunch
 - Increases with Q_p
 - Depends on the L_{misalign}

Conclusion and outlook

- Understanding hosing is important for PWFA (LWFA)
- Hosing @ AWAKE: can occur in the 1st stage \rightarrow might grow further in the 2nd stage \rightarrow
- Study hosing \rightarrow know how to suppress it
- Preliminary study of hosing:
 - Induced by e⁻ bunch (wakefields) misalignment
 - At fpe
 - Occurs at the same time as eSSM (in \perp planes)
 - Hosing and eSSM caused by the same wakefields \rightarrow reproducible
 - Direction reverses with direction of misalignment
 - Observed growth along the bunch
 - Increases with Q_p
 - Depends on the L_{misalign}

Thank you for your attention!