Laboratoire d'Optique Appliquée

Palaiseau - FRANCE http://loa.ensta.fr

High average gradient in a laser-gated multistage plasma wakefield accelerator

A. Knetsch¹, I.A. Andriyash¹, M. Gilljohann¹,1 O. Kononenko¹, A. Matheron¹, Y. Mankovska¹, P. San Miguel Claveria¹, V. Zakharova¹, E. Adli², and S. Corde¹

¹LOA, ENSTA Paris, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, 91762 Palaiseau, France

²Department of physics, University of Oslo, N-0316 Oslo, Norway

Manuscript, see: https://arxiv.org/abs/2210.02263

Single-stage PWFAs improve continuously

- Continuos single-stage progress on critical goals such as high accelerating gradient, matching, efficiency, energy-spread conservation, depletion
- Collider applications need orders of magnitude higher energy gains

Multiple stages as path to TeV energies

Source: A. Seryi,, et al. PAC09, Vancouver, BC (2009).

- A series of several subsequent PWFA stages as a path forward to reach TeV energies
- Defining parameter: Average accelerating gradient
- Plasma accelerators are inherently small, intra-stage can be a major contributor to decreased average gradient.

Multiple stages as path to TeV energies

Source: A. Seryi,, et al. PAC09, Vancouver, BC (2009).

- A series of several subsequent PWFA stages as a path forward to reach TeV energies
- Defining parameter: Average accelerating gradient
- Plasma accelerators are inherently small, intra-stage can be a major contributor to decreased average gradient.

Some core components (strongly simplified)

11-10-2022 | 20th Advanced Accelerator Concepts Workshop (AAC'22)

Step 1: Set all beams on same axis

Step 2: Gate in wakefield accelerator

Step 3: Apply delays, replenish driver

Optimized spacing between beams

Optimized spacing between beams

Evaluating expected accelerator length

11-10-2022 | 20th Advanced Accelerator Concepts Workshop (AAC'22)

Introduction into different orbits: The beam reservoir

11-10-2022 | 20th Advanced Accelerator Concepts Workshop (AAC'22)

Introduction into different orbits: The plasma stages

Introduction into different orbits: Drive-beams

Introduction into different orbits: The trailing beam

Development of longitudinal phase spaces

Results: Average gradient

What about other parameters ?

- Efficiency: $\eta = \frac{\Delta W_{tra.}Q_{tra.}}{2W_{res.}Q_{res.}} \approx 10.6 \%$
 - Improve by reducing charge of plasma lens driver,
 - improve with better beam loading
- Matching:

•

- Matched spot size on every stage

$$\sigma_r^m = \sqrt{\sqrt{\frac{2}{\gamma}} \frac{\epsilon_{\mathrm{n}}}{k_{\mathrm{p}}}}.$$

- High-energy range is close to 2f-2f imaging

$$f=rac{2\gamma}{k_{
m p}^2 L_{
m lens}} \propto rac{\gamma}{L_{
m lens} n_{
m e}}$$

Either density or lens length can be increased to control focusing

Thank you for your attention

Questions ? Comments ?

11-10-2022 | 20th Advanced Accelerator Concepts Workshop (AAC'22)