20th Advanced Accelerator Concepts Workshop

Contribution ID: 32

Type: Contributed Oral

HiPACE++: GPU-accelerated modeling of plasma wakefield accelerators

Thursday, 10 November 2022 10:45 (15 minutes)

Modeling plasma wakefield accelerators is computationally challenging. Using the quasi-static approximation allows for efficient modeling of demanding plasma wakefield accelerator scenarios. Here, the latest highlights of the performance-portable, 3D quasi-static particle-in-cell (PIC) code HiPACE++ are presented. HiPACE++ demonstrates orders of magnitude speed-up on modern GPU-equipped supercomputers in comparison to its CPU-only predecessor HiPACE. Thus, HiPACE++ enables fast and accurate modeling of challenging simulation settings, including the proton-beam-driven accelerator AWAKE or low-emittance positron acceleration schemes at unprecedented resolution.

Acknowledgments

We acknowledge the Gauss Centre for Supercomputing for providing computing time on the Supercomputer JUWELS Booster. We acknowledge Funding by the Helmholtz Matter and Technologies Accelerator R&D Program, by the US Exascale Computing Project (No. 17-SC-20-SC), and by the Director, Office of High Energy Physics, of the DoE (No. DE-AC02-05CH11231).

Primary authors: DIEDERICHS, Severin (DESY / LBNL); BENEDETTI, Carlo (LBNL); HUEBL, Axel (LBNL); LEHE, Rémi (LBNL); MYERS, Andrew (LBNL); SINN, Alexander (DESY); VAY, Jean-Luc (LBNL); ZHANG, Weiqun (LBNL); THÉVENET, Maxence (DESY)

Presenter: DIEDERICHS, Severin (DESY / LBNL)

Session Classification: WGs 1+2 Joint Session

Track Classification: Working Group Parallel Sessions: WG2 Oral: Computation for Accelerator Physics