

ADVANCED ACCELERATOR CONCEPTS WORKSHOP 7th November 2022, NY, USA

SIMULATIONS OF HYDRODYNAMIC OPTICAL-FIELD-IONISED PLASMA CHANNELS

TEAM

Mathis Mewes, <u>Rob Shalloo</u>, Gregory Boyle, Jens Osterhoff, Maxence Thévenet Deutsches Elektronen-Synchrotron DESY

Christopher Arran University of York Laura Corner University of Liverpool Roman Walczak, Simon Hooker University of Oxford

OPTICAL-FIELD-IONISATION CAN BE USED TO FORM PLASMA CHANNELS

A PROMISING PLASMA WAVEGUIDE FOR HIGH ENERGY LPAS

WAVEGUIDE FORMATION

- 1. Plamsa column ionised and heated by fs laser
- 2. Hot plasma expands outwards driving shockwave
- 3. Creates radial density profile suitable for guiding

ADVANTAGES

- 1. New waveguide formed on each shot
- 2. Heating mechanism independent of electron density
- 3. Waveguides formed in free space

EXPERIMENTAL PROGRESS HAS BEEN QUICK

BUT SIMULATIONS PROVE TRICKY

Controlled acceleration of GeV electron beams in an all-optical plasma waveguide

Kosta Oubrerie¹, Adrien Leblanc¹, Olena Kononenko¹, Ronan Lahaye¹, Igor A. Andriyash¹, Julien Gautier₀¹, Jean-Philippe Goddet¹, Lorenzo Martelli¹, Amar Tafzi¹, Kim Ta Phuoc¹, Slava Smartsev^{1,2} and Cédric Thaury₀[™]

MECHANICS OF PLASMA CHANNEL FORMATION

IMPORTANT PHYSICAL PROCESSES SPAN SMALL TO LARGE TIMESCALES

THE HYDRODYNAMIC PLASMA MODEL

AN OVERVIEW OF KEY PHYSICS

• Single, quasi-neutral fluid

• Two temperatures (2T), separate for electrons from heavy particles (ions, atoms, molecules)

 Ionization state tracked via collisional reaction rates and diffusion Flow $\frac{\partial \rho}{\partial t} + \vec{\nabla} \cdot (\rho \vec{v}) = 0$ $\frac{\partial \rho \vec{v}}{\partial t} + \vec{\nabla} \cdot (\rho \vec{v} \vec{v}) = -\vec{\nabla} p - \vec{\nabla} \cdot (\eta \vec{\nabla} \vec{v})$

Electron energy

$$\frac{\partial C_e T_e}{\partial t} + \vec{\nabla} \cdot \left[(C_e T_e + p_e) \vec{v} \right] - \vec{v} \cdot \vec{\nabla} p_e - \vec{\nabla} \cdot \left(\lambda_e \vec{\nabla} T_e \right)$$
$$= -k_{e-h} (T_e - T_a) - \sum_{j, \alpha} \Delta E_j r_j$$
Similar for Atoms

Species α $\frac{\partial n_{\alpha}}{\partial t} + \vec{\nabla} \cdot (n_{\alpha}\vec{v}) + \vec{\nabla} \cdot \vec{d}_{\alpha} = \sum_{j} c_{j\alpha}r_{j}$

Key

ρ: mass density v: flow velocity p: pressure B: magnetic field τ: viscous stress tensor n: number density c: stoichiometric const. r: reaction rate C: heat capacity T: temperature λ : thermal conductivity k_{e-h} : collisional energy transfer ΔE : reaction energy d: diffusion flow **Transport Coefficients**

No explicit EM fields required

SIMULATING HOFI PLASMA CHANNEL EXPANSION

BENCHMARKING AGAINST EXPERIMENTAL DATA

2017 OXFORD EXPERIMENT

HOFI plasma channels generated in hydrogen gas cell using a spherical lens

Longitudinal interferometry used to measure electron density

SIMULATION PROCESS

SIMULATING PLASMA EXPANSION FROM EXPERIMENTAL INITIAL CONDITIONS

SIMULATION RECIPE

- 1. Simulate expansion of each transverse slice
 - 1. Hermite-Gauss Reconstruction of measured laser intensity profile
 - 2. Calculation of electron density and temperature
 - 3. Rotationally average
 - 4. Simulate hydrodynamic expansion
- 2. Longitudinally average plasma profiles at each timestep to mimic probe beam

BENCHMARK RESULTS

GOOD AGREEMENT BETWEEN SIMULATION AND EXPERIMENT

Rob Shalloo | AAC | Nov. 7th 2022 | **DESY.** 11

Some structures may be obscured by reduction to 1D

Good agreement at low initial pressures – ionization induced refraction expected to be problematic at higher pressures

INVESTIGATING MODAL STRUCTURE

LOW-INTENSITY LIMIT

INVESTIGATING MODAL STRUCTURE

HIGH-INTENSITY LIMIT

[1] A. Picksley et al., Phys. Rev. E **102**, 053201 (2020)[2] R. J. Shalloo, PhD Thesis, University of Oxford (2018)

TOWARDS EXPERIMENTAL DESIGN

EXPLORING HOFI TUNABILITY

CONCLUSIONS

- Method for accurate HOFI simulations
- Verified with experimental benchmark
- Exploration of tuneability of plasma channels

NEXT STEPS

- Paper in preparation
- Further investigation of modal properties: loss, coupling
- Further model development (3D, other species etc.)

THANK YOU

OPEN FOR DISCUSSION & QUESTIONS