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Motivations

* lonization effects of gases, especially produced by higher power lasers, play a
major role in laser wakefield accelerations.

* Improve known multi-level ionization algorithms

* Implement multi-ionization feature in electromagnetic code SPACE and
enable simulations of ionization injection using high-Z gas target

* CO, laser at BNL allows exploration in long-wavelength scale.

* lonization for high-atomic-number gases presents more complex numerical
challenges than ionization of hydrogen.
e Challenges -->next page



lonization dynamics

* Step-wise process. * Challenges of this model:
dng _ . o pydrogen * W depends on the ion species and the
d% charge state
o= Wo no—Wyn?  Different time scales between ionization
A evolution and the code timestep
= w,_,n@2+ _, n¢-D+ e Dramatically increased memory allocation

dn+ from multiple ion levels

* Assumption:

Z
Ne- = 2 ke n* * ignore recombination (much larger time
scale)



Tunneling ionization rate

* ADK ionization model, in an alternating electric field

* In explicit PIC code where dt K T
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—> ion species and charge state dependent variables
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lon charge after ionization Z
Orbital quantum number |, projection of orbital guantum number m
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Dependence on | and m

* The ionization rate also depends on the orbital guantum numbers | and their
projections m,
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Ana\ytma\ so\utlon

at t=0, [n,
calculate W (E,j) at each time step, assume the values are constant during dt

no
T'L+
,"7’2+

,':L(Z—1)+
| 2%t

Tl+

| 0

s WO
Wo
0

n

) W1
Wi

Z+]T —

_W2

[ng

0
0
0
Wy_o =Wz
0 Wz_4
0

the general solution of this ODE system:
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(t +dt) =

VJ)' eigenvector of the bidiagonal matrix of [W/}]
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correct selection of W + solve as analytical solution

=» overcome time discrepancy between ionization process and PIC time step

ZCV

coefficient for particular solution, solved using V and
[n(t)] as initial condition at the beginning of each time step
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Evolution of ionization

* Example: ionization evolution of Kr, near the focusing location of the laser.

Ti:Sapp laser
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* Highest level of ionization depends on peak intensity of the laser. 2 though not

necessary to record all Z levels of number density, still need 12+ levels

* Low and intermediate levels are highly transient.

* Only 2 to 3 ionization levels are present at an instance of time and location.

0.18



lonization evolution using reduced ODE system

 Full system of equations = reduced-order system with only 3 or 4 ionization levels
* |nitialize number densities for each cell with only 4 levels

* This greatly improves efficiency of the algorithm for finely meshed 3D problem:s.

Algorithm: Reduced ODE system

procedure SOLVE NUMBER DENSITY
n «— 4 level of number density
p < lowest ionization level

[ APt ] F—Wp 0 0 0 |[ nP* | W « ionization probability
alp+)+ w, W,y 0 0 n(p+h)+ loop: solve 4-level ODE update n
AP+ | 0 Wos Wy 0 n(p+2)+ ?fdd [e:llj‘,ctr(())nt lt;rom new number density
7(p+3)+ 0 0 -W %% (p+3)+ nill = én
n n
: oL pi2 TeelL - n[1,2,3] = n[2,3,4].
nl4] =0.

p=p+1.




Verification of reduced-4 level

* From example using Kr and CO2 laser

* Largest error happens around peak of laser, but overall < 0.01%

error from 4-level ODE
solver with 1e-5 cutoff
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Implementation in the 3D, relativistic, parallel
code SPACE

* EM-PIC module
- physics models describing atomic processes and transformations
- tracking particles of numerous species
- parallel solver optimization for field solver and particle mover

* ES module - Adaptive Particle-in-Cloud method (AP-Cloud)

- highly adaptive, fully particle replacement of PIC, for arbitrary geometry
domains

- adaptive computational nodes or particles with an octree data structure

- particle quantity assigned to computational nodes by weighted least square
approximation

- PDE discretized using generalized finite difference method and solved with
fast linear solvers

[4] K. Yu, P. Kumar, S. Yuan, A. Cheng, and R. Samulyak, SPACE: 3D parallel solvers for Vlasov-Maxwell and Vlasov-Poisson equations for
Relativistic Plasmas with Atomic Transformations, Comp. Phy. Comm., Aug. 2022, doi: 10.1016/j.cpc.2022.108396.
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Validation of solution T
10% |
* Yergeau experiment (1987)
* CO2 laser, pulse duration 1.1ns, beam waist 65um
e Xe ion (dots) © 10
* Estimated gaussian-Lorentz laser profile ;
I[(r,z,t) =1y F(r,z)T(t) 5
* Integrate number of ions over a finite 3D volume é 10
around the laser focus location (lines) =
* Good qualitative agreement .
e saturation features of each ion level 10 2 S P
* same slope of #ion vs. peak intensity comparing to the - e _Xzz+ . X:+
experimental data » w3 o et

« Slight shift to the right due to accumulation of errors 10~ ”
10 10

peak intensity (W/cm 2)

[3] F. Yergeau, S. L. Chin, and P. Lavigne, “Multiple ionisation of rare-gas atoms by an intense CO_2 laser (10A14W/cm”2),” J. Phys. B: Atom.
Mol. Phys., vol. 20, no. 4, pp. 723-739, Feb. 1987, doi: 10.1088/0022-3700/20/4/013.
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lonization injection experiment setup

High NIR intensity only
inside the bubble

NIR pulse l

Plasma
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LWIR su se
NIR beam waist with?
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* High-Z gas target (Kr): high amplitude wakes, high acceleration and low emittance
* NIR: low ay with high intensity to ionize the plasma at a trapping wake phase.

* LWIR: high a, with low intensity long wavelength to drive the wake in self-modulated
rigime, without fully ionize the gas



Study of ionization injection (3D implementation)

lon yield by Ti:Sapph laser with Charge distribution by Ti:Sapph laser
3mJ, 70fs (2ps after laser pass focus location)
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Divergence comparison wit
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Simulation of ionization injection

with preionization (transverse) 0X=O.236rad

—— with preionization (longitudinal) 6. =0.206rad
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Conclusion

* Developed efficient multi-level ionization algorithm with low error
* Validated model by comparing to experimental results
* Preliminary results for the study of ionization injection

Future Work

* Sensitively test on ion generations with various parameters
* Improve resolution and memory allocation efficiency in the 3D code
* Support ionization injection experiments in various settings
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