Efficient algorithms for multi-level ionization of high-atomic-number gases and applications

Speaker: Aiqi Cheng¹

Co-authors: Roman Samulyak¹, Rotem Kupfer², Navid Vafaei-Najafabadi¹

AAC 2022

1. Stony Brook University 2. Lawrence Berkeley National Laboratory Acknowledgement: This work is supported by U.S. Department of Energy, Office of Science under Award No. DE-SC-0014043.

Motivations

- Ionization effects of gases, especially produced by higher power lasers, play a major role in laser wakefield accelerations.
- Improve known multi-level ionization algorithms
- Implement multi-ionization feature in electromagnetic code SPACE and enable simulations of ionization injection using high-Z gas target
- CO₂ laser at BNL allows exploration in long-wavelength scale.
- Ionization for high-atomic-number gases presents more complex numerical challenges than ionization of hydrogen.
 - Challenges -->next page

Ionization dynamics

• Step-wise process.

$$\frac{dn_0}{dt} = -W_1 n_0 \qquad \leftarrow \text{Hydrogen}$$
$$\frac{dn^+}{dt} = W_0 n_0 - W_1 n^+$$

$$\frac{dn^{(Z-1)+}}{dt} = W_{Z-2}n^{(Z-2)+} - W_{Z-1}n^{(Z-1)+}$$
$$\frac{dn^{Z+}}{dt} = W_{Z-1}n^{(Z-1)+}$$

$$n_{e^-} = \sum_{k=1}^Z k \, n^{k+}$$

- Challenges of this model:
 - W depends on the ion species and the charge state
 - Different time scales between ionization evolution and the code timestep
 - Dramatically increased memory allocation from multiple ion levels
- Assumption:
 - ignore recombination (much larger time scale)

Tunneling ionization rate

- ADK ionization model, in an alternating electric field
 - In explicit PIC code where $dt \ll \tau_0$

 $W = \omega_{\alpha} \frac{Z^{2}}{2n^{*2}} \left(\frac{2e}{n^{*}}\right)^{2n^{*}} \exp\left[-\frac{2E_{a}}{3E_{L}} \left(\frac{Z}{n^{*}}\right)^{3}\right] \times \frac{(2l+1)(l+|m|)!}{2\pi n^{*} 2^{|m|} (|m|)! (l-|m|)!} \left(2\frac{E_{a}Z^{3}}{E_{L}}\right)^{2n^{*}-|m|-1}$

 \rightarrow ion species and charge state dependent variables

Effective principle quantum number $n^* = Z \sqrt{\xi_H / \xi_{ion}}$ Ion charge after ionization Z

Orbital quantum number l, projection of orbital quantum number m

 $\rightarrow E_L$ Local electric field at certain time

 \rightarrow Atomic unit conversion

 ω_{α} 1 a.u. Frequency

 E_a 1 a.u. electric field

[2] M.Chen, Numerical modeling of laser tunneling ionization in explicit particle-in-cell codes Journal of Computational Physics, 2013.

Dependence on I and m

- The ionization rate also depends on the orbital quantum numbers I and their projections $\ensuremath{\mathsf{m}}_{\ensuremath{\mathsf{l}}}$

Analytical solution

$$\begin{bmatrix} \dot{n_0} \\ \dot{n}^+ \\ \dot{n}^{2+} \\ \vdots \\ \dot{n}^{(Z-1)+} \\ \dot{n}^{Z+} \end{bmatrix} = \begin{bmatrix} -W_0 & 0 & 0 & \dots & 0 & 0 \\ W_0 & -W_1 & 0 & \dots & 0 & 0 \\ 0 & W_1 & -W_2 & \dots & 0 & 0 \\ \vdots & \dots & \ddots & \vdots & \vdots \\ \vdots & \dots & \ddots & \ddots & \vdots & \vdots \\ 0 & \dots & \dots & W_{Z-2} & -W_{Z-1} & 0 \\ 0 & \dots & \dots & 0 & W_{Z-1} & 0 \end{bmatrix} \begin{bmatrix} n_0 \\ n^+ \\ n^{2+} \\ \vdots \\ n^{(Z-1)+} \\ n^{Z+} \end{bmatrix}$$

- at t=0, $[n_0 \quad n^+ \quad \cdots \quad n^{Z+}]^T = [n_0 \quad 0 \quad \cdots \quad 0]^T$
- calculate $W_j(E, j)$ at each time step, assume the values are constant during dt the general solution of this ODE system: $n^{i+}(t+dt) = \sum_{j=0}^{Z} C_j \vec{V_j}(i) e^{-W_j(t)dt}$ $\vec{V_j}$: eigenvector of the bidiagonal matrix of $[W_j]$ $\begin{bmatrix} \vec{V_0} + \vec{V_1} & \dots + \vec{V_Z} \end{bmatrix} \begin{bmatrix} C_0 \\ C_1 \\ \vdots \\ C_z \end{bmatrix} = \begin{bmatrix} n_0(t) \\ n_1(t) \\ \vdots \\ n_Z(t) \end{bmatrix}$
- - - [n(t)] as initial condition at the beginning of each time step
- correct selection of W + solve as analytical solution
 - → overcome time discrepancy between ionization process and PIC time step

Evolution of ionization

• Example: ionization evolution of Kr, near the focusing location of the laser.

- Highest level of ionization depends on peak intensity of the laser. → though not necessary to record all Z levels of number density, still need 12+ levels
- Low and intermediate levels are highly transient.
- Only 2 to 3 ionization levels are present at an instance of time and location.

Ionization evolution using reduced ODE system

- Full system of equations \rightarrow reduced-order system with only 3 or 4 ionization levels
- Initialize number densities for each cell with only 4 levels
- This greatly improves efficiency of the algorithm for finely meshed 3D problems.

		Algo	orithm: Reduced ODE system	
		procedure solve number density		
			$\mathbf{n} \leftarrow 4$ level of <i>number density</i>	
			$p \leftarrow lowest ionization level$	
$\begin{bmatrix} \dot{n}^{p+} \end{bmatrix} \begin{bmatrix} -W_p \end{bmatrix} ($) 0	0] [n^{p+}]	$\mathbf{W} \leftarrow$ ionization probability	
$\dot{n}^{(p+1)+}$ $W_{p}^{'}$ $-W$	$n_{n+1} = 0$	0 $ n^{(p+1)+} $	<i>loop</i> : solve 4-level ODE update n	
$\dot{n}^{(p+2)+} = \begin{bmatrix} P \\ 0 \end{bmatrix} W.$	$-W_{n+2}$	$0 n^{(p+2)+}$	add electron from new number density	
$\dot{n}^{(p+3)+}$ 0 0	$-W_{-1}$	W_{p+3} $\begin{bmatrix} n \\ n^{(p+3)+} \end{bmatrix}$	if $n[1] \approx 0$ then	
	0 <i>w p</i> +2		n[1, 2, 3] = n[2, 3, 4].	
			n[4] = 0.	
			p = p + 1.	

Verification of reduced-4 level

- From example using Kr and CO2 laser
- Largest error happens around peak of laser, but overall < 0.01%

Implementation in the 3D, relativistic, parallel code SPACE

- EM-PIC module
 - physics models describing atomic processes and transformations
 - tracking particles of numerous species
 - parallel solver optimization for field solver and particle mover
- ES module Adaptive Particle-in-Cloud method (AP-Cloud)

- highly adaptive, fully particle replacement of PIC, for arbitrary geometry domains

- adaptive computational nodes or particles with an octree data structure

- particle quantity assigned to computational nodes by weighted least square approximation

- PDE discretized using generalized finite difference method and solved with fast linear solvers

[4] K. Yu, P. Kumar, S. Yuan, A. Cheng, and R. Samulyak, SPACE: 3D parallel solvers for Vlasov-Maxwell and Vlasov-Poisson equations for Relativistic Plasmas with Atomic Transformations, Comp. Phy. Comm., Aug. 2022, doi: <u>10.1016/j.cpc.2022.108396</u>.

Validation of solution

- Yergeau experiment (1987)
 - CO2 laser, pulse duration 1.1ns, beam waist 65um
 - Xe ion (dots)
- Estimated gaussian-Lorentz laser profile $I(r, z, t) = I_0 F(r, z)T(t)$
- Integrate number of ions over a finite 3D volume around the laser focus location (lines)
- Good qualitative agreement
 - saturation features of each ion level
 - same slope of #ion vs. peak intensity comparing to the experimental data
- Slight shift to the right due to accumulation of errors

[3] F. Yergeau, S. L. Chin, and P. Lavigne, "Multiple ionisation of rare-gas atoms by an intense CO_2 laser (10^14W/cm^2)," *J. Phys. B: Atom. Mol. Phys.*, vol. 20, no. 4, pp. 723–739, Feb. 1987, doi: <u>10.1088/0022-3700/20/4/013</u>.

Ionization injection experiment setup

- High-Z gas target (Kr): high amplitude wakes, high acceleration and low emittance
- NIR: low a_0 with high intensity to ionize the plasma at a trapping wake phase.
- LWIR: high a₀ with low intensity long wavelength to drive the wake in self-modulated rigime, without fully ionize the gas

Study of ionization injection (3D implementation)

Ion yield by Ti:Sapph laser with 3mJ, 70fs

Charge distribution by Ti:Sapph laser (2ps after laser pass focus location)

Divergence comparison with experiment

From plasma wakes driven by the CO2 laser in **self-modulated regime**

Simulation of ionization injection

Two laser	perpendicular	Co-propagate
charge/ charge without ionization laser	1.00	1.18
θ/θ_0 without ionization laser	x:0.98, y:1.02	x:0.85, y:1.01

Conclusion

- Developed efficient multi-level ionization algorithm with low error
- Validated model by comparing to experimental results
- Preliminary results for the study of ionization injection

Future Work

- Sensitively test on ion generations with various parameters
- Improve resolution and memory allocation efficiency in the 3D code
- Support ionization injection experiments in various settings

References

- M.V. Ammosov, N.B. Delone, V.P. Krainov, Sov. Phys. JETP 64 (1986) 1191.
- M.Chen, Numerical modeling of laser tunneling ionization in explicit particle-in-cell codes Journal of Computational Physics, 2013.
- F. Yergeau, S. L. Chin, and P. Lavigne, "Multiple ionisation of rare-gas atoms by an intense CO_2 laser (10^14W/cm^2)," *J. Phys. B: Atom. Mol. Phys.*, vol. 20, no. 4, pp. 723–739, Feb. 1987, doi: <u>10.1088/0022-3700/20/4/013</u>.
- K. Yu, P. Kumar, S. Yuan, A. Cheng, and R. Samulyak, SPACE: 3D parallel solvers for Vlasov-Maxwell and Vlasov-Poisson equations for Relativistic Plasmas with Atomic Transformations, Comp. Phy. Comm., Aug. 2022, doi: <u>10.1016/j.cpc.2022.108396</u>.

Acknowledgment

This work is supported by U.S. Department of Energy, Office of Science under Award No. DE-SC-0014043.