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Overview

1. Near-Field Coherent Transition Radiation — modelling and simulations.

2. Analytical estimates and observables of NF-CTR beam focusing with FACET-II parameters.

3. Probing Strong-Field regime of QED via NF-CTR process.
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Sources of high-energy photons have important applications in almost all areas of research. However, the
photon flux and intensity of existing sources is strongly limited for photon energies above a few hundred
keV. Here we show that a high-current ultrarelativistic electron beam interacting with multiple
submicrometer-thick conducting foils can undergo strong self-focusing accompanied by efficient emission
of gamma-ray synchrotron photons. Physically, self-focusing and high-energy photon emission originate
from the beam interaction with the near-field ition radiation panying the be foil collision.
This near field radiation is of amplitude comparable with the beam self-field, and can be strong enough that
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Ongoing progress in laser and accelerator technology opens new possibilities in high-field science, notably for
the study of the largely unexplored strong-field QED regime where electron-positron pairs can be created di-
rectly from light-matter or even light-vacuum interactions. Laserless strategies such as beam-beam collisions’
have also been proposed with the prospect of pushing strong-field quantum electrodynamics (SFQED) in the
nonpertubative regime. Here we report on an original concept to probe SFQED by harnessing the interaction
between an electron beam and a solid target. When a high-density, ultrarelativistic beam impinges onto an
even denser plasma, the beam self fields are reflected at the plasma boundary: in the rest frame of the beam
electrons, these fields can exceed the Schwinger field, leading to SFQED effects such as quantum nonlinear
inverse Compton scattering and nonlinear Breit-Wheeler electron-positron pair creation. We show that such
beam-plasma collisions can produce results similar to beam-beam collisions with the advantage of a much
simpler experimental setup. This scenario opens the way to precision studies of strong-field QED, with,mea-
surable clear signatures in terms of gamma-ray photon and pair production, and thus is a very prg’ ising
milestone on the path towards laserless studies of nonperturbative QED.
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Overview

1. Near-Field Coherent Transition Radiation — modelling and simulations.

2. Analytical estimates and observables of NF-CTR beam focusing with FACET-II parameters.

3. Probing Strong-Field regime of QED via NF-CTR process.

See talk by D. Storey on Wed. 13:30 (WG 4+7) for first experimental results!
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1. Near-Field Coherent Transition Radiation — modelling and simulations

» Transition radiation emitted by a charged beam passing through a conducting foil has a net
focusing effect on the beam.

* Initially suggested in 80’s for beam transport’ — image charges.

« Focusing element to reach solid-density electron beams and
bright gamma-ray source3.

0.5 pm Aluminum foils

O ‘

Dense electron
i JHL. ,  and 7-ray beam

Electron beam

Conceptual representation of NFCTR image focusing?

1R. J. Adler, Part. Accel. 12, 39 (1982). 2A. Matheron et. al., submitted to Comm. Phys. 3 A. Sampath et. al., PhysRevlLett.126.064801 (2021) 2
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1. Near-Field Coherent Transition Radiation — modelling and simulations
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3D PIC simulation of e- beam interaction with stack of Al foils
of 0.5 um thickness.

« Total charge Q = 2 nC.

* Initial beam energy E = 10 GeV.

* Initial beam size gy = o, = 0.55 um.

 Initial beam normalized emittance ¢, = 3 um

Conversion efficiency of = 30% after 20 foils

Y-ra?/ spectrum after 20 foils electron spectrum after 20 foils
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2. Analytical estimates and observables of NF-CTR beam focusing

» Motivation for E332 experimental collaboration at FACET-II.

o [um]

» First goal: measure focusing effect on the beam.
Focusing effect depends on beam size o,, beam energy E and beam charge Q

. 8mego2E . ezN
Effective focal length4: f = —>-2— to be compared to S-function ﬁ/f = gg
o n n
100 ; 100 ; 100 )
—vacuum propagation —vacuum propagation —vacuum propagation
90 —with CTR 90 —with CTR 90 | —with CTR . .
80 ----fonlgposutlon 80 ----foﬂéposmon 80 ----foﬂgposmon Normallzed emlttance gn ,B/f
© 7% S 30 pm 0.586
%0 D : DM 10 pm 1.76
30 30 3 jranel 5.86
20 20
N ; D =2nC,E=10GeV, o, = 10 um
0 0 1 U
-0.1 0 0.1 02 03 04 -0.1 0 0.1 02 03 04 -0.1 0 0.1 02 03 04

s [m] s [m] s [m]

4S. Corde et. al., Beam focusing by near-field transition radiation. [Research Report] IP Paris; CEA; MPIK. 2020. hal-02937777v2



2. Analytical estimates and observables of NF-CTR beam focusing

Motivation for E332 experimental collaboration at FACET-II.

» First goal: measure focusing effect on the beam.
Focusing effect depends on beam size o,, beam energy E and beam charge Q

Effective focal length*: f = 8meooiF to be compared to S-function B / =
' e ’ f 7 8re,me?e, &,

Divergence increase due to multiple scattering in the foil: depends on foil thickness d.
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2. Analytical estimates and observables of NF-CTR beam focusing

Motivation for E332 experimental collaboration at FACET-II.

First goal: measure focusing effect on the beam.
Focusing effect depends on beam size o,, beam energy E and beam charge Q

8megoiE _ . B; _ €N Q
., 10 be compared to f-function [r= Sremetes &

Effective focal length?: f =

Divergence increase due to multiple scattering in the foil: depends on foil thickness d.

Optimized experimental parameters: low beam emittance, high beam charge, thin foils.

4S. Corde et. al., Beam focusing by near-field transition radiation. [Research Report] IP Paris; CEA; MPIK. 2020. hal-02937777v2



2. Analytical estimates and observables of NF-CTR beam focusing

« Motivation for E332 experimental collaboration at FACE

« First goal: measure focusing effect on the beam.
Focusing effect depends on beam size o,, beam eng

* Beam size
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* Optimized experimental parameters: low beam emittz
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* Measure energy conversion to gammas with “relaxedy 24 ¢+ ~ ... |
beam parameters?
o, =5um,e, =3 um, E =10 GeV Propagation distance z[mm|

with stack of 1 um Al foils with 100 um spacing Rotationally symmetric PIC simulation results

4S. Corde et. al., Beam focusing by near-field transition radiation. [Research Report] IP Paris; CEA; MPIK. 2020. hal-02937777v2



3. Probing Strong-Field regime of QED via NF-CTR process.

/> E* = Electric field in the e~ rest frame

« Strong-Field regime of QED: y = E*/ECT > 1 — QED effects (pair production) become prominent.

« Beam-beam collisions were proposed® as a laser-less scenario to study the nonperturbative regime (a)(z/ 3> 1)

* The beam-beam scenario benefits from:
(a)

o |_ » The large Lorentz factor y of the relativistic e- beams.
it ‘ « The high amplitude electromagnetic fields generated
zone w by tightly focused bunches.

Q\c

M“J'rf’
v‘f

>V. Yakimenko et. al., Phys. Rev. Let. 122, 190404 (2019)



3. Probing Strong-Field regime of QED via NF-CTR process.

/> E* = Electric field in the e~ rest frame

« Strong-Field regime of QED: y = E*/ECT > 1 — QED effects (pair production) become prominent.

« Beam-beam collisions were proposed® as a laser-less scenario to study the nonperturbative regime (oc)(z/ 3> 1)

* The beam-beam scenario benefits from:

. b 2§SEL » The large Lorentz factor y of the relativistic e- beams.
. « The high amplitude electromagnetic fields generated
i o by tightly focused bunches.
&
f 4'* o ”beam

. » ldea: Via the NFCTR process, one e- beam can be
| replaced by a conductor.

| « The beam experiences its own self-fields.

» Offers a significant simplification of the experiment.

2A. Matheron et. al., submitted to Comm. Phys. > V. Yakimenko et. al., Phys. Rev. Let. 122, 190404 (2019)



3. Probing Strong-Field regime of QED via NF-CTR process.

cr = —150 nm cr = 37 nm
. | : . [ :

i 102 410"
| T e O PIC simulation parameters:
35 B /5(r = 1.60,,€ = 0) © s Beam charge Q = 2 nC.
3 Beam energy E = 10 GeV.
4 Bunch length o, = 54 nm.
% Beam size g, = 271 nm.
*=  Plasma density n, = 10**cm™3.
=
12
0

-100

loa

2A. Matheron et. al., submitted to Comm. Phys. A 6



3. Probing Strong-Field regime of QED via NF-CTR process.

cr = —150 nm cr = 37 nm

T

0o 2 4 6 8 10 1 x10'
V.“‘_g_z,,..{cnl.?.;‘_]“_“-‘ 1022 | 47 .
T e O PIC simulation parameters:
E —E/3(r = 1.60,,£ = 0) ©® s Beamcharge Q = 2nC.
i Beam energy E = 10 GeV.
4 Bunch length o, = 54 nm.
> .
o s Beamsize g, = 271 nm.
3= Plasma density n, = 10**cm™3.
i
12
0 T ;24 0
-150 -100 -50
= : : A A ‘ et [nm]
-0.2 -0.1 0 0.1 0.2 -0.2 -0.1 0 0.1 0.2
€ [pm] € [pm]

In vacuum the beam self-fields
compensate with each other (y = 0).

loa

2A. Matheron et. al., submitted to Comm. Phys. A 6



3. Probing Strong-Field regime of QED via NF-CTR process.

cr =—150 nm | eT = 37 nm .
T —
0 @ " .,._.'t?{ﬂnr-»%.,_ N 11?1022 4 *1014 , .
05 e O 2 PIC simulation parameters:
ER 351 B /A(r = 1.60,,£ = 0) P s Beam charge Q = 2 nC.
i 3 Beam energy E = 10 GeV.
05 i s 2 Bunch length g = 54 nm.
=525 > i
1 1 | 5 S 5 Beamsize g, = 271 nm.
0.2 0.1 0 0.1 02| -02 0.1 0 0.1 02 T 5| T 32 Plasma density n, = 1024cm =3
—— '} +~ )
15 ~
12
1H
\ 11
0.5 Y ‘\.‘
_
0 ' ' : = 0
-150 -100 -50 0 50
et [nm]

At the plasma surface (NFCTR)
» Radial electric component vanish (E, — 0)
« Azimuthal magnetic component
« Doubles (radiative regime, gy < ag,)
« Remains constant (stationary regime, o, > o,)

In vacuum the beam self-fields
compensate with each other (y = 0).

2 A. Matheron et. al., submitted to Comm. Phys. 6
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3. Probing Strong-Field regime of QED via NF-CTR process.

cr [nm)]

At the plasma surface (NFCTR)
» Radial electric component vanish (E, — 0)
« Azimuthal magnetic component
« Doubles (radiative regime, gy < ag,)
« Remains constant (stationary regime, o, > o,)

2A. Matheron et. al., submitted to Comm. Phys.
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3. Probing Strong-Field regime of QED via NF-CTR process.

pum—

Increase beam energy ( y «<y)

Can we reach an arbitrarily high y ? =
Increase beam self-fields amplitude — Increase beam density n,;

—

However, NFCTR fails if n, = n,, (plasma is not able screen the beam self-fields).

The maximum achievable plasma density n, in an experiment limits the highest value of x

* Due to large field ionization of solid atoms and plasma surface compression®, PIC simulations
show that for n;, ~ n, the beam self-fields are reflected leading to y =~ yE.¢/E,.

Furthermore, the beam shape °!/;, also affects the reflection (radiative vs. stationary regimes),
and thus also limits the maximum y of a given experimental configuration.

2A. Matheron et. al., submitted to Comm. Phys. ©X. Xu et. al. Phys. Rev. Lett. 126, 094801 (2021). 7



3. Probing Strong-Field regime of QED via NF-CTR process.

Taking into account all the limiting phenomena, a QED-PIC simulation” with an optimized set of parameters results in:

ct = 0 nm ‘ ‘er =75 nm ‘ 7 = 250 nm ‘ 022 1020 e Beam Charge Q = 2 ’nC
e RRT NI R T \“l | Beam energy E = 10 GeV.
o ij E" | Nl F 10; lwi Beam size gy = 0, = 55 nm.
_ ' - = Initial Au' foil
% 0 25 —16024
0.1r SRS Y R o< lsE
Sl |° Xmax =25
0.2 ) , ) ) |70 0
-0.2 -041 0 0.1 02 -02 -01 0 0.1 02 -02 -01 0 0.1 0.2 .
¢ [m] ¢ [pm] ¢ [pum] « Abundant high energy gamma-ray and
aot X0 - Breit-Wheeler pair production, well
4 i
@ % above competing processes such as
3 " Bremsstrahlung or Bethe-Heitler.
z - g
s® 1° = S * 10 pC of positron charge above 1 MeV
© 4
1t
12
0 2 4 6 8 10 12 0 -0200 -':oo 0 100 200 Mé,v(‘)(o) 2 A. Matheron et. al., submitted to Comm. Phys. loa
& [GeV] cr [nm)]

/M Lobet et al 2016 J. Phys.: Conf. Ser. 688 012058 8



Summary and conclusions

The intense EM fields produced at the surface of a solid conducting foil when interacting a high peak-current
beam (Near-Field CTR) are interesting as:

« Beam focusing elements to reach solid-density beams — bright gamma-ray source.

Main motivation of E332 experiment at FACET-II:
* need high charge, low emittance and thin foils.

« Simulations show that substantial conversion efficiency E»m.l,;zﬁs%
should be measured with FACET-Il nominal parameters 4 En
i
« Laser-less scenario to probe the Strong-Field regime of QED. 5 - |
- Precision studies of SFQED. Y 3 |
« QED signal above competing processes. L e \50“9

* Intermediate step before beam-beam collisions.
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