20th Advanced Accelerator Concepts Workshop

European Research Council Established by the European Commission

Near-Field CTR beam focusing and its application to Strong Field QED

Pablo San Miguel Claveria (LOA, IP Paris / X-GolP, IST Lisbon)

On behalf of:

E332 Collaboration (SLAC, UCLA, CU Boulder, U. Oslo, Stony Brook U., MPIK, CEA, LOA)

Work supported by the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (Miniature beam-driven Plasma Accelerators project, Grant Agreement No. 715807) and by the ANR (UnRIP project, Grant No. ANR- 20-CE30-0030)

Numerical simulations were performed using HPC resources from PRACE (Grant No. 2017174175) and GENCI-TGCC (Grants No. 2018- A0040507594, No. 2019-A0060510786, 2020-A0080510786 and 2021- A0100510786 to run PIC simulations.

- 1. Near-Field Coherent Transition Radiation modelling and simulations.
- 2. Analytical estimates and observables of NF-CTR beam focusing with FACET-II parameters.
- 3. Probing Strong-Field regime of QED via NF-CTR process.

 DHYSICAL REVIEW LETTERS 126, 064801 (2021) Extremely Dense Gamma-Ray Pulses in Electron Beam-Multifoil Collisions Archana Sampath, ¹ Xavier Davoine, ^{2,3} Sébastien Corde, ⁴ Laurent Gremillet, ^{2,3} Max Gilljohann, ⁴ Maitreyi Sangal, ¹ Christoph H. Keitel, ¹ Robert Ariniello, ⁵ John Cary, ⁵ Henrik Ekerfelt, ⁶ Claudio Emma, ⁶ Frederico Fuzza, ⁶ Hiroki Fujii, ² Mark Hogan, ⁶ Chan Joshi, ⁷ Alexander Knetsch, ⁴ Olena Kononenko, ⁴ Valentina Lee, ⁵ Mike Litos, ⁵ Kenneth Marsh, ⁷ Zan Nie, ⁷ Brendan O'Shea, ⁶ J. Ryan Puetrson, ⁶ Pablo San Miguel Claveria, ⁴ Dung Storey, ⁶ Yipeng Wu, ⁷ Xinlu Xu, ⁶ Chaojie Zhang, ² and Matteo Tamburing, ⁶ ⁹ Max-Planck-Institut für Kemphysik, Saupfercheckweg 1, D-69117 Heideberg, Germany ⁶ CEA, DMM, DIF, 1927 Arpaion, France ³ Université Paris-Saclay, CEA, LMCE, 91680 Bruyères-le-Châtel, France ³ Université Paris-Saclay, CEA, Marce, Foloso Bodyne, USA ¹ Sundoral Accelerator Laboratory, Menlo Park, California 94025, USA ¹ Sundoral Accelerator Laboratory, Menlo Park, California 94035, USA ¹ Sundord University, Physics Department, Stanford, California 94035, USA ¹ Sundord University, Physics Department, Stanford, California 94035, USA ¹ Sundord University Portsons have important applications in almost all areas of research. However, the photon flux and intensity of existing sources is strongly limited for photon energies above a few hundred keV. Here we show that a high-current ultrarelativistic electron beam interacting with multiple submicrometer-thick conducting folls can undergo strong self-focusing accompanied by efficient emission of gamma-ray synchrotron photons.	Beam focusing by near-field transition radiation S. Corde ¹ , M. Gilljohann ¹ , X. Davoine ² , L. Gremillet ² , A. Sampath ³ , and M. Tamburini ³ ¹ IP Paris, France ² CEA, France ³ MPIK, Germany <u>https://hal-polytechnique.archives-ouvertes.fr</u> /hal-02937777v2	 Probing strong-field QED in A. Matheron,^{1,a}) P. San Miguel Claver M. J. Hogan,³ C. H. Keitel,⁴ A. Knetss Peterson,^{3,6} D. Storey,³ Y. Wu,⁵ X. X Corde^{1, b} ¹⁾LOA, ENSTA Paris, CNRS, Ecole P. Prance ²⁾ University of Colorado Boulder, Depa Colorado 80309, USA ³⁾SLAC National Accelerator Laborators, ⁴⁾ Max-Planck-Institut für Kernphysik, Germany ⁹⁾ University of California Los Angeles, ⁹⁾ Stanford University, Physics Departmu ⁷⁾ CEA, DAM, DIF, 91297 Arpajon, Fro ⁹⁾ Universite Paris-Saclay, CEA, LMCE Ongoing progress in laser and acceler the study of the largely unexplored st rectly from light-matter or even light- have also been proposed with the pro nonpertubative regime. Here we repo between an electron beam and a soli even denser plasma, the beam self fie electrons, these fields can exceed the inverse Compton scattering and non beam-plasma collisions can produce simpler experimental setup. This sec
from the beam interaction with the near-field transition radiation accompanying the beam-foil collision. This near field radiation is of amplitude comparable with the beam self-field, and can be strong enough that DOI: 10.1103/PhysRevLett.126.064801		https://arxiv.ou

Probing strong-field QED in ultrarelativistic beam-plasma collisions

A. Matheron,^{1, a)} P. San Miguel Claveria,^{1, a)} R. Ariniello,² H. Ekerfelt,³ F. Fiuza,³ S. Gessner,³ M F. Gilljohann,¹ M. J. Hogan,³ C. H. Keitel,⁴ A. Knetsch,¹ M. Litos,² Y. Mankovska,¹ S. Montfelori,⁴ Z. Nie,⁵ B. O'Shea,³ J. R. Peterson,^{3, b} D. Storey,³ Y. Wu,⁵ X. Xu,³ V. Zakharova,¹ X. Davoine,^{7, 8} L. Gremillet,^{7, 8} M. Tamburini,⁴ and S. Corde^{1, 1})
¹⁾ LOA, ENSTA Paris, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, 91762 Palaiseau, France
²⁾ University of Colorado Boulder, Department of Physics, Center for Integrated Plasma Studies, Boulder, Colorado 80309, USA
³⁾ SLAC National Accelerator Laboratory, Menlo Park, CA 9(1025, USA
⁴⁾ Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, D-69117 Heidelbery, Germany
⁵⁾ University of California Los Angeles, Los Angeles, CA 90095, USA
⁶⁾ Staford University, Physics Department, Stanford, CA 94305, USA
⁷⁾ CEA, DAM, DIF, 91297 Arpajon, France
⁸⁾ Université Paris-Saclay, CEA, LMCE, 91680 Bruyères-le-Châtel, France
⁹ Ongoing progress in laser and accelerator technology opens new possibilities in high-field science, notably for the study of the largely unexplored strong-field QED regime where electron-positron pairs can be created directly from light-matter or even light-vacuum interactions. Laserless strategies such as beam-beam collisions¹ have also been proposed with the prospect of pushing strong-field quantum electrodynamics (SPCED) in the nonpertubative regime. Here we report on an original concept to probe SFQED by harnessing the interaction

onpertubative regime. Here we report on an original concept to probe SFQED by harnessing the interaction etween an electron beam and a solid target. When a high-density, ultrarelativistic beam impinges onto an ven denser plasma, the beam self fields are reflected at the plasma boundary: in the rest frame of the beam electrons, these fields can exceed the Schwinger field, leading to SFQED effects such as quantum nonlinear iverse Compton scattering and nonlinear Breit-Wheeler electron-positron pair creation. We show that such eam-plasma collisions can produce results similar to beam-beam collisions with the advantage of a much mpler experimental setup. This scenario opens the way to precision studies of strong-field QED, with meaarable clear signatures in terms of gamma-ray photon and pair production, and thus is a very protising illestone on the path towards laserless studies of nonperturbative QED.

https://arxiv.org/abs/2209.14280

- 1. Near-Field Coherent Transition Radiation modelling and simulations.
- 2. Analytical estimates and observables of NF-CTR beam focusing with FACET-II parameters.
- 3. Probing Strong-Field regime of QED via NF-CTR process.

See talk by D. Storey on Wed. 13:30 (WG 4+7) for first experimental results!

PHYSICAL REVIEW LETTERS 126, 064801 (2021)

Extremely Dense Gamma-Ray Pulses in Electron Beam-Multifoil Collisions

Archana Sampath,¹ Xavier Davoine,^{2,3} Sébastien Corde,⁴ Laurent Gremillet,^{2,3} Max Gilljohann,⁴ Maitreyi Sangal,¹ Christoph H. Keitel,¹ Robert Ariniello,⁵ John Cary,⁵ Henrik Ekerfelt,⁶ Claudio Emma,⁶ Frederico Fiuza,⁶ Hiroki Fujii,⁷ Mark Hogan,⁶ Chan Joshi,⁷ Alexander Knetsch,⁴ Olena Kononenko,⁴ Valentina Lee,⁵ Mike Litos,⁵ Kenneth Marsh,⁷ Zan Nie,⁷ Brendan O'Shea,⁶ J. Ryan Peterson,^{6,8} Pablo San Miguel Claveria,⁴ Doug Storey,⁶ Yipeng Wu,⁷ Xinlu Xu,⁶ Chaojie Zhang,⁷ and Matteo Tamburini^{6,1} ¹Max-Planck-Institut für Kernphysik, Saugfercheckweg 1, D-69117 Heidelberg, Germany ²CEA, DAM, DIF, 91297 Arpain, France ³Université Paris-Saclay, CEA, LMCE, 91680 Bruyères-le-Châtel, France ⁴LOA, ENSTA Paris, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, 91762 Palaiseau, France ⁵University of Colorado Boulder, Department of Physics, Center for Integrated Plasma Studies,

Boulder, Colorado 80309, USA ⁶SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA ⁷University of California Los Angeles, Los Angeles, California 90095, USA ⁸Stanford University, Physics Department, Stanford, California 94305, USA

(Received 25 September 2020; revised 18 December 2020; accepted 8 January 2021; published 12 February 2021)

Sources of high-energy photons have important applications in almost all areas of research. However, the photon flux and intensity of existing sources is strongly limited for photon energies above a few hundred keV. Here we show that a high-current ultrarelativistic electron beam interacting with multiple submicrometer-thick conducting foils can undergo strong self-focusing accompanied by efficient emission of gamma-ray synchrotron photons. Physically, self-focusing and high-energy photon emission originate from the beam interaction with the near-field transition radiation accompanying the beam-foil collision. This near field radiation is of amplitude comparable with the beam self-field, and can be strong enough that

DOI: 10.1103/PhysRevLett.126.064801

Beam focusing by near-field transition radiation

S. Corde¹, M. Gilljohann¹, X. Davoine², L. Gremillet², A. Sampath³, and M. Tamburini³

> ¹IP Paris, France ²CEA, France ³MPIK, Germany

https://hal-polytechnique.archives-ouvertes.fr /hal-02937777v2

Probing strong-field QED in ultrarelativistic beam-plasma collisions

A. Matheron,^{1, a)} P. San Miguel Claveria,^{1, a)} R. Ariniello,² H. Ekerfelt,³ F. Fiuza,³ S. Gessner,³ M F. Gilljohann,¹ M. J. Hogan, ³ C. H. Keitel,⁴ A. Knetsch,¹ M. Litos,² Y. Mankovska,¹ S. Montefiori,⁴ Z. Nie,⁵ B. O'Shea,³ J. R. Peterson,^{3,6} D. Storey,³ Y. Wu,⁵ X. Xu,³ V. Zakharova,¹ X. Davoine,^{7,8} L. Gremillet,^{7,8} M. Tamburini,⁴ and S. Corde^{1, b)} ¹⁾LOA, ENSTA Paris, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, 91762 Palaiseau, France ²⁾ University of Colorado Boulder, Department of Physics, Center for Integrated Plasma Studies, Boulder, Colorado 80309, USA ³⁾SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA ⁴⁾ Max-Planck-Institut f
ür Kernphysik, Saupfercheckweg 1, D-69117 Heidelberg, Germany ⁵⁾ University of California Los Angeles, Los Angeles, CA 90095, USA ⁶⁾Stanford University, Physics Department, Stanford, CA 94305, USA 7) CEA, DAM, DIF, 91297 Arpajon, France ⁸⁾ Université Paris-Saclay, CEA, LMCE, 91680 Bruyères-le-Châtel, France Ongoing progress in laser and accelerator technology opens new possibilities in high-field science, notably for the study of the largely unexplored strong-field QED regime where electron-positron pairs can be created directly from light-matter or even light-vacuum interactions. Laserless strategies such as beam-beam collisions¹ have also been proposed with the prospect of pushing strong-field quantum electrodynamics (SFQED) in the nonpertubative regime. Here we report on an original concept to probe SFQED by harnessing the interaction between an electron beam and a solid target. When a high-density, ultrarelativistic beam impinges onto an even denser plasma, the beam self fields are reflected at the plasma boundary: in the rest frame of the beam

even denser plasma, the beam self fields are reflected at the plasma boundary: in the rest frame of the beam electrons, these fields can exceed the Schwinger field, leading to SFQED effects such as quantum nonlinear inverse Compton scattering and nonlinear Breit-Wheeler electron-positron pair creation. We show that such beam-plasma collisions can produce results similar to beam-beam collisions with the advantage of a much simpler experimental setup. This scenario opens the way to precision studies of strong-field QED, with measurable clear signatures in terms of gamma-ray photon and pair production, and thus is a very processing milestone on the path towards laserless studies of nonperturbative QED.

https://arxiv.org/abs/2209.14280

1. Near-Field Coherent Transition Radiation – modelling and simulations

- Transition radiation emitted by a charged beam passing through a conducting foil has a net focusing effect on the beam.
- Initially suggested in 80's for beam transport¹ image charges.

Aluminum foils

10 µm

 Focusing element to reach solid-density electron beams and bright gamma-ray source³.

10 µm

0.5 µm

Electron beam

Conceptual representation of NFCTR image focusing²

loa

Dense electron

and γ -ray beam

1. Near-Field Coherent Transition Radiation – modelling and simulations

- 3D PIC simulation of e⁻ beam interaction with stack of AI foils of 0.5 µm thickness.
 - Total charge Q = 2 nC.
 - Initial beam energy $E = 10 \ GeV$.
 - Initial beam size $\sigma_{\parallel} = \sigma_{\perp} = 0.55 \ \mu m$.
 - Initial beam normalized emittance $\varepsilon_n = 3 \ \mu m$
- Conversion efficiency of $\approx 30\%$ after 20 foils

- Motivation for E332 experimental collaboration at FACET-II.
- First goal: measure focusing effect on the beam.

Focusing effect depends on beam size σ_{\perp} , beam energy E and beam charge Q

Effective focal length⁴: $f = \frac{8\pi\epsilon_0\sigma_{\perp}^2 E}{eQ}$, to be compared to β -function $\beta/f = \frac{e^2 N}{8\pi\epsilon_0 mc^2 \varepsilon_n} \propto \frac{Q}{\varepsilon_n}$

⁴ S. Corde *et. al.,* Beam focusing by near-field transition radiation. [Research Report] IP Paris; CEA; MPIK. 2020. hal-02937777v2

- Motivation for E332 experimental collaboration at FACET-II.
- First goal: measure focusing effect on the beam.

Focusing effect depends on beam size σ_{\perp} , beam energy E and beam charge Q

Effective focal length⁴: $f = \frac{8\pi\epsilon_0 \sigma_{\perp}^2 E}{eQ}$, to be compared to β -function $\beta/f = \frac{e^2 N}{8\pi\epsilon_0 mc^2 \varepsilon_n} \propto \frac{Q}{\varepsilon_n}$

Divergence increase due to multiple scattering in the foil: depends on foil thickness *d*.

⁴ S. Corde *et. al.,* Beam focusing by near-field transition radiation. [Research Report] IP Paris; CEA; MPIK. 2020. hal-02937777v2

- Motivation for E332 experimental collaboration at FACET-II.
- First goal: measure focusing effect on the beam.

Focusing effect depends on beam size σ_{\perp} , beam energy E and beam charge Q

Effective focal length⁴:
$$f = \frac{8\pi\epsilon_0\sigma_\perp^2 E}{eQ}$$
, to be compared to β -function $\beta/f = \frac{e^2 N}{8\pi\epsilon_0 mc^2 \varepsilon_n} \propto \frac{Q}{\varepsilon_n}$

Divergence increase due to multiple scattering in the foil: depends on foil thickness *d*.

• Optimized experimental parameters: low beam emittance, high beam charge, thin foils.

- Motivation for E332 experimental collaboration at FAC
- First goal: measure focusing effect on the beam.
 Focusing effect depends on beam size σ_⊥, beam energy

Effective focal length⁴: $f = \frac{8\pi\epsilon_0\sigma_{\perp}^2 E}{eQ}$, to be come

Divergence increase due to multiple scattering in the

- Optimized experimental parameters: low beam emitta
- Measure energy conversion to gammas with "relaxed" beam parameters?

 $\sigma_{\perp} = 5 \ \mu m$, $\varepsilon_n = 3 \ \mu m$, $E = 10 \ GeV$

with stack of $1 \ \mu m$ Al foils with $100 \ \mu m$ spacing

Rotationally symmetric PIC simulation results

⁴ S. Corde *et. al.,* Beam focusing by near-field transition radiation. [Research Report] IP Paris; CEA; MPIK. 2020. hal-02937777v2

 E^* = Electric field in the e^- rest frame

- Strong-Field regime of QED: $\chi = \frac{E^*}{E_{cr}} > 1 \rightarrow \text{QED}$ effects (pair production) become prominent.
- Beam-beam collisions were proposed⁵ as a laser-less scenario to study the nonperturbative regime ($\alpha \chi^{2/3} > 1$)

- The beam-beam scenario benefits from:
 - The large Lorentz factor γ of the relativistic e⁻ beams.
 - The high amplitude electromagnetic fields generated by tightly focused bunches.

 E^* = Electric field in the e^- rest frame

- Strong-Field regime of QED: $\chi = \frac{E^*}{E_{cr}} > 1 \rightarrow \text{QED}$ effects (pair production) become prominent.
- Beam-beam collisions were proposed⁵ as a laser-less scenario to study the nonperturbative regime ($\alpha \chi^{2/3} > 1$)

- The beam-beam scenario benefits from:
 - The large Lorentz factor γ of the relativistic e⁻ beams.
 - The high amplitude electromagnetic fields generated by tightly focused bunches.
- Idea: Via the NFCTR process, one e⁻ beam can be replaced by a conductor.
 - The beam experiences its own self-fields.
 - Offers a significant simplification of the experiment.

loa 6

In vacuum the beam self-fields compensate with each other ($\chi \approx 0$).

loa

² A. Matheron *et. al.*, submitted to Comm. Phys.

² A. Matheron *et. al.*, submitted to Comm. Phys.

However, NFCTR fails if $n_b \gtrsim n_p$ (plasma is not able screen the beam self-fields).

The maximum achievable plasma density n_p in an experiment limits the highest value of χ

• Due to large field ionization of solid atoms and plasma surface compression⁶, PIC simulations show that for $n_b \approx n_p$ the beam self-fields are reflected leading to $\chi \approx \gamma E_{self}/E_{cr}$.

Furthermore, the beam shape $\sigma_{\parallel}/\sigma_{\perp}$ also affects the reflection (radiative vs. stationary regimes), and thus also limits the maximum χ of a given experimental configuration.

Taking into account all the limiting phenomena, a QED-PIC simulation⁷ with an optimized set of parameters results in:

Summary and conclusions

The intense EM fields produced at the surface of a solid conducting foil when interacting a high peak-current beam (**Near-Field CTR**) are interesting as:

• Beam focusing elements to reach solid-density beams \rightarrow bright gamma-ray source.

Main motivation of E332 experiment at FACET-II:

- need high charge, low emittance and thin foils.
- Simulations show that substantial conversion efficiency should be measured with FACET-II nominal parameters
- Laser-less scenario to probe the Strong-Field regime of QED.
 - Precision studies of SFQED.
 - QED signal above competing processes.
 - Intermediate step before beam-beam collisions.

LOA (IP Paris): S. Corde, M. Gilljohann, A. Knetsch, O. Kononenko, Y. Mankovska, A. Matheron, G. Raj, P. San Miguel Claveria, V. Zakharova

UCLA: C. Joshi, K. A. Marsh, N. Zan, C. Zhang

SLAC: R. Ariniello, H. Ekerfelt, F. Fiuza, S. Gessner, M. Hogan, B. O'Shea, J. Peterson, D. Storey

CU Boulder: J. Cary, C. Doss, K. Hunt-Stone, V. Lee, M. Litos

Stony Brook U.: N. Vafaei-Najafabadi

U. Oslo: G. Cao, E. Adli

MPIK: C. Keitel, M. Tamburini, A. Sampath,

CEA: X. Davoine, J. Faure, L. Gremillet

 α

