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1. Near-Field Coherent Transition Radiation – modelling and simulations

• Transition radiation emitted by a charged beam passing through a conducting foil has a net 
focusing effect on the beam.

• Initially suggested in 80’s for beam transport1 – image charges.

• Focusing element to reach solid-density electron beams and
bright gamma-ray source3.

1 R. J. Adler, Part. Accel. 12, 39 (1982).  2 A. Matheron et. al., submitted to Comm. Phys.  3 A. Sampath  et. al., PhysRevLett.126.064801 (2021)

Conceptual representation of NFCTR image focusing2
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1. Near-Field Coherent Transition Radiation – modelling and simulations

3 A. Sampath  et. al., PhysRevLett.126.064801 (2021)

• 3D PIC simulation of e- beam interaction with stack of Al foils 
of 0.5 μm thickness.

• Total charge ! = 2 $%.
• Initial beam energy & = 10 )*+.
• Initial beam size -∥ = -/ = 0.55 12.
• Initial beam normalized emittance 34 = 3 12

• Conversion efficiency of ≈ 30% after 20 foils

3

Ɣ-ray spectrum after 20 foils electron spectrum after 20 foils



2. Analytical estimates and observables of NF-CTR beam focusing

4 S. Corde  et. al., Beam focusing by near-field transition radiation. [Research Report] IP Paris; CEA; MPIK. 2020. hal-02937777v2 

• Motivation for E332 experimental collaboration at FACET-II.

• First goal: measure focusing effect on the beam.
Focusing effect depends on beam size !", beam energy E and beam charge Q
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4 S. Corde  et. al., Beam focusing by near-field transition radiation. [Research Report] IP Paris; CEA; MPIK. 2020. hal-02937777v2 

• Motivation for E332 experimental collaboration at FACET-II.

• First goal: measure focusing effect on the beam.
Focusing effect depends on beam size !", beam energy E and beam charge Q

Divergence increase due to multiple scattering in the foil: depends on foil thickness d.

• Optimized experimental parameters: low beam emittance, high beam charge, thin foils.

• Measure energy conversion to gammas with “relaxed”
beam parameters?
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3. Probing Strong-Field regime of QED via NF-CTR process.

5 V.  Yakimenko et. al., Phys. Rev. Let. 122, 190404 (2019) 

• Strong-Field regime of QED: ! = #$∗ $&' > 1 → QED effects (pair production) become prominent.

• Beam-beam collisions were proposed5 as a laser-less scenario to study the nonperturbative regime (+! ⁄- . > 1)

0∗ = Electric 8ield in the <= rest	frame

• The beam-beam scenario benefits from:

• The large Lorentz factor ɣ of the relativistic e- beams.
• The high amplitude electromagnetic fields generated 

by tightly focused bunches.
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• Strong-Field regime of QED: ! = #$∗ $&' > 1 → QED effects (pair production) become prominent.

• Beam-beam collisions were proposed5 as a laser-less scenario to study the nonperturbative regime (+! ⁄- . > 1)

0∗ = Electric 8ield in the <= rest	frame

• The beam-beam scenario benefits from:

• The large Lorentz factor ɣ of the relativistic e- beams.
• The high amplitude electromagnetic fields generated 

by tightly focused bunches.

• Idea: Via the NFCTR process, one e- beam can be 
replaced by a conductor.

• The beam experiences its own self-fields.

• Offers a significant simplification of the experiment.
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3. Probing Strong-Field regime of QED via NF-CTR process.

2 A. Matheron et. al., submitted to Comm. Phys. 

PIC simulation parameters:
Beam charge ! = 2 $%.
Beam energy & = 10 )*+.
Bunch length -∥ = 54 $1.
Beam size -2 = 271 $1.
Plasma density $4 = 10567189.
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3. Probing Strong-Field regime of QED via NF-CTR process.

2 A. Matheron et. al., submitted to Comm. Phys. 

At the plasma surface (NFCTR)
• Radial electric component vanish (!" ⟶ 0)
• Azimuthal magnetic component 

• Doubles (radiative regime, %∥ ≪ %()
• Remains constant (stationary regime, %∥ ≫ %()  

PIC simulation parameters:
Beam charge * = 2 -..
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3. Probing Strong-Field regime of QED via NF-CTR process.

2 A. Matheron et. al., submitted to Comm. Phys. 

In vacuum the beam self-fields 
compensate with each other (! ≈ 0).

At the plasma surface (NFCTR)
• Radial electric component vanish (%& ⟶ 0)
• Azimuthal magnetic component 

• Doubles (radiative regime, (∥ ≪ (+)
• Remains constant (stationary regime, (∥ ≫ (+)  

PIC simulation parameters:
Beam charge - = 2 01.
Beam energy % = 10 345.
Bunch length (∥ = 54 09.
Beam size (+ = 271 09.
Plasma density 0; = 10<=>9?@.

Control beam parameters

Precision studies of SFQED
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3. Probing Strong-Field regime of QED via NF-CTR process.

However, NFCTR fails if !" ≳ !$ (plasma is not able screen the beam self-fields). 

Can we reach an arbitrarily high % ? 
Increase beam energy ( % ∝ ' )

Increase beam self-fields amplitude → Increase beam density ()

The maximum achievable plasma density (* in an experiment limits the highest value of +

• Due to large field ionization of solid atoms and plasma surface compression6, PIC simulations 
show that for !" ≈ !$ the beam self-fields are reflected leading to % ≈ ⁄'./012 .34.

2 A. Matheron et. al., submitted to Comm. Phys. 6 X. Xu et. al. Phys. Rev. Lett. 126, 094801 (2021). 

Furthermore, the beam shape 56∥ 68 also affects the reflection (radiative vs. stationary regimes), 
and thus also limits the maximum % of a given experimental configuration.

7



3. Probing Strong-Field regime of QED via NF-CTR process.

Taking into account all the limiting phenomena, a QED-PIC simulation7 with an optimized set of parameters results in:

2 A. Matheron et. al., submitted to Comm. Phys.
7 M Lobet et al 2016 J. Phys.: Conf. Ser. 688 012058

Beam charge ! = 2 $%.
Beam energy & = 10 )*+.
Beam size -∥ = -/ = 55 $1.
Initial Au1+ foil

• 2345 ≈ 25

• Abundant high energy gamma-ray and 
Breit-Wheeler pair production, well 
above competing processes such as 
Bremsstrahlung or Bethe-Heitler.

• 10 pC of positron charge above 1 MeV

8



Summary and conclusions

The intense EM fields produced at the surface of a solid conducting foil when interacting a high peak-current 
beam (Near-Field CTR) are interesting as:

• Beam focusing elements to reach solid-density beams → bright gamma-ray source.

• Laser-less scenario to probe the Strong-Field regime of QED.

Main motivation of E332 experiment at FACET-II: 
• need high charge, low emittance and thin foils.

• Simulations show that substantial conversion efficiency 

should be measured with FACET-II nominal parameters

• Precision studies of SFQED.

• QED signal above competing processes.

• Intermediate step before beam-beam collisions.
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