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Motivations

Relativistic streaming instabilities are pervasive in astrophysics...

Astrophysical Jets -- the ultimate beam-plasma
interaction laboratory

» They are thought to play a key role in blazars, cosmic
magnetisation at interstellar and intergalactic scales and high-

X-rays from Crab . .

Nebula Pulsar energy explosive transients (e.g. GRB).

» Are of fundamental importance as provide a mechanism for
energy conversion from particles to EM fields and to gamma rays.
Radio Jets from Galaxy 3C296
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T. Katsouleas, role of Weibel instability in
astrophysics and cosmic jets.
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energy conversion from particles to EM fields and to gamma rays.
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. ) ;L ... but also in laboratory plasmas

1/2 light year

T. Katsouleas, role of Weibel instability in
astrophysics and cosmic jets.

» They set important limitations on the feasibility of experimental
concepts such as ICF or a plasma-based acceleration.

» They can channel beam kinetic energy into y-rays (Benedetti, A.,
Tamburini, M. & Keitel, C.H. Giant collimated gamma-ray flashes.
[Nature Photon 12, 319-323 (2018)])




E-305: Beam filamentation
and bright gamma-ray bursts

>

Towards controlled experiments at SLAC - the E305 experiment

Simulated beam density at saturation of FACET-II beam
propagating in an Al target (credits to G. Raj).

E-305 experiment at FACET-Il facility at SLAC with the goal of:

Study relativistic beam-plasma instabilities with plasma densities in the range 10824 cm3 , by sending FACET-Il 10 GeV
electron beams into gaseous or solids targets.

Charaterize resulting y-ray radiation
Study the interplay of different modes in the nonlinear stage

Investigate additional physics such as collisional effects in exotic nonequilibrium warm dense matter states (solid), finite
bunch length and finite beam size effects, and competition with plasma wakefields (gas)
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Relativistic beam-plasma instabilities

Plasma electrons &

Particle Beam

Unstable electromagnetic modes exponentially

yp = beam Lorentz factor
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In the ultra-relativistic regime (y, > 1), oblique modes dominate the interaction

Depending on the orientation (k) of the mode w.r.t. the beam propagation, there exist three types of beam-plasma instabilities

A. Bret, L. Gremillet, and
M. E. Dieckmann, Phys.
Pla. 17, 120501 (2010).
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Finite beam effects in ultra relativistic beam-plasma instabilities

Unbounded system Finite beam

In accelerator facilities, particles beams have a finite spatial extent.

> Finite bunch length (longitudinal): — | Spatiotemporal dynamics*

» Finite beam size (transverse): — | Electron beam self-focusing

*A. Bers, in Handbook of Plas. Phys., (North-Holland Physics Publishing, 1983): TSI Simulated FACET-1I-like beam
*V. B. Pathak,et. al., New J. Phys. 17, 043049 (2015): CFl propagating in uniform plasma
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Finite beam effects in ultra relativistic beam-plasma instabilities
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An electron or electron-positron beam streaming through a plasma is notoriously prone to microinstabilities.
For a dilute ultrarelativistic infinite beam, the dominant instability is a mixed mode between longitudinal two-
stream and transverse filamentation modes, with a phase velocity oblique to the beam velocity. A spatiotemporal
theory describing the linear growth of this oblique mixed instability is proposed which predicts that spatiotem-
poral effects generally prevail for finite-length beams, leading to a significantly slower instability evolution than
in the usually assumed purely temporal regime. These results are accurately supported by particle-in-cell (PIC)
simulations. Furthermore, we show that the self-focusing dynamics caused by the plasma wak o] e
finite-width beams can compete with the oblique instability. Analyzed through PIC si
these two processes in realistic systems bears important implications fo;
ultrarelativistic beam-plasma interactions.

DOI: 10.1103/PhysRevResearch.4.023085

Simulated FACET-II-like beam
propagating in uniform plasma
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Spatiotemporal dynamics of ultra-relativistic beam-plasma instabilities

densit

Analytical model: cold semi-inifinite beam in uniform o Vb 7 ‘
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Oblique growthrate for unbounded system

DOI: 10.1103/PhysRevResearch.4.023085



Anlytical model: cold semi-inifinite beam in uniform 0
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for 7 < & /vy

for T > & /vy

Spatiotemporal evolution




Spatiotemporal dynamics of ultra-relativistic beam-plasma instabilities
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Spatiotemporal dynamics of ultra-relativistic beam-plasma instabilities
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Finite transverse beam-size: transverse wakefields vs. instability

» Beam self-focusing from plasma wakefields
excited by finite-size, nonneutral beams can

quench the instability.

» Such inhibition occurs if the betatron
frequency*

wy' =/ wme/0W

gets larger than the effective
(spatiotemporal) OTSI growth rate

3/2 1/2
ToTSI = 2 (ge}(p ) (%) , §
Obl
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» For a given beam charge, increasing plasma

density density favors the instability.

https://arxiv.org/abs/2106.11625
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Summary and Overview

> The finite extent of particle beams from accelerators has an impact on the dynamics of the instability
>~ Spatiotemporal effects lead to a significantly slower evolution of the instability.

» Competition with self-focusing dynamics can quench the instability.

> Results relevant to design and interpret future accelerator experiments on ultrarelativistic beam-plasma
instabilities.

n, = 2.5 X 10 cm™? ‘

cr = 0.00 mm

(@ |er=1.77T mm cr = 3.55 mm (©) |er =6.21 mm

y [pm]




» Results relevan
instabilities.

> Competitigaasath.se
Ongomg experimental campaign:

Summary and Overview

n, = 2.5 X 10 cm™?

>~ Spatiotemporal effects lead to a significantly slower evolution of the instability.
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> The finite extent of particle beams from accelerators has an impact on the dynamics of the instability
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Finite transverse beam-size: transverse wakefields vs. instability
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