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Summary

• Machine Learning for improving Coherent electron Cooling (CeC) 
operations

• Machine Learning for brightness control at the Alternating 
Gradient Synchrotron (AGS)



Coherent electron Cooling
• Designed to cool 26.5 GeV/u ion beam circulating in RHIC’s yellow ring. 

• CeC CW SRF accelerator with unique SRF electron gun generates electron beams with quality 
sufficient for the current experiment and for the future EIC cooler.

• Electron bunches are compressed to peak current of 50 – 100 A and accelerated to 14.5 MeV.

• Accelerated electron beam is transported through an achromatic dogleg to merge with ion beam 
in RHIC.

• Interaction between ions and electron beam occurs in the common section.
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Time-resolved Diagnostic Beamline 
(TRDBL)
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Matching 
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Beam line: 7 quadrupoles (3 + 4), 2 trims, 1 transverse deflecting cavity, 1 dipole
Monitors: 2 Profile Monitors, 4 BPMs
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Bmad simulation of TRDBL
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Transverse deflecting cavity (TDC)
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• A TDC converts the beam’s longitudinal distribution to transverse distribution which is measurable

Q1 Q2 Q3 Q4

Focusing Lattice

Longitudinal
Slices YAG

Transvers Defecting
Cavity 

time

tim
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Parameter Value
TDC RF frequency 1.3 GHz

TDC RF voltage 100 – 140 kV
Bunch length ~ 70 ps
Beam energy 14.56 MeV

Beam size 𝜎! at Yag without TDC ~ 0.2 – 0.4 mm

Phase TDC to zero crossing phase
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TDC simulation results: time profile
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• TDC provide a time dependent transverse kick to the beam
• After TDC, the beam’s time information convert to Y direction
• In Bmad, a crab cavity with tilt = pi/2 is used

Time

Time

TDC on
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Emittance measurement

8

[Σ"][Σ] [𝑀]

Focusing 
Lattice

Longitudinal
Slice YAG

Screen

∵ Σ! = 𝑀 Σ 𝑀 "

∴ 𝜎##! = 𝑚##
$ 𝜎## +𝑚##𝑚#$2𝜎#$ +𝑚#$

$ 𝜎$$

parabola 0it ⟹ 𝜀 = 𝜎##𝜎$$ − 𝜎#$$

[3]
𝜎##!

𝑚#$
$ = 𝜎##

𝑚##
𝑚#$

$
+ 2𝜎#$

𝑚##
𝑚#$

+ 𝜎$$



Quadrupole scan with two quads
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• Quad scan method with 1 quad → defocusing in another plane

• Vertical focusing → slice beam vertically to get slice emittance

• Scan two quads (Q3, Q4) with opposite polarity → keep beam focused vertically

• Find quad combination settings that gives best vertical focusing 
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Quadrupole scan with two quads
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• Scan diagnostic Q3 and Q4 together, observe beam at Yag3
• For each Q3 value, find Q4 value that gives best vertical focusing at Yag3

𝑀 = [𝑀%& '( )*+,][𝑀%&][𝑀%, '( %&] 𝑀%,



Current quad scan routine
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• Find best Q3-Q4 combinations with sequential scans:

• Scan 13 Q3 settings

• For each Q3 setting, scan 9 Q4 settings

• Record Q3-Q4 combination that gives smallest Y RMS

• Calculate and store 𝑚## and 𝑚#$ for parabola fitting

• Time taken:
• ~ 5 minutes for each Q3 setting

• > 1 hour for an entire scan routine



Speed up quad scan with ML
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• Time consuming sequential scans

• Train a ML model to establish 
mapping between quadrupole 
settings and beam size

• Trained ML model predicts best 
Q3-Q4 combinations without 
additional scans

• Useful for faster general beam 
tuning & as starting point of 
optimization

Artificial Neural Network

𝑄3
𝑄4
⋮

𝜎)
𝜎*
⋮

Desired beam 
properties

Quadrupole (or other 
tunable) settings
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Method
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• Neural Network (NN) using pytorch → USPAS course: Optimization and Machine 
Learning for Accelerators 

• Fully connected layers: dense layer
• output = activation(dot(input, kernel) + bias)

• Activation function: Hyperbolic Tangent (Tanh) and Rectified Linear Unit (ReLU)

[5]
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Sample historical data
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• Input: Q3, Q4 power current

• Output: RMS beam size, focus on y 
direction



Quadscan NN model: training results
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Training: 50 out of 99 data pairs, testing (shown below): 49 out of 99 data pairs



New quadscan routine with Neural Network
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1. Scan 6 Q3 settings with old quad scan routine, but save all 54 data points

2. Train neural network model on 54 data points

3. Give neural network the remaining 7 Q3 settings needed to be scanned

4. Let neural network predict the corresponding Q4 settings that give best focusing

5. Load the predicted settings to the beamline and record beam size

Ø Current method:
Ø Matlab script with GUI to do scan → jupyter notebook to train model and generate 

predicted settings → Matlab script to change beamline

Ø Optimal future method:
Ø Incorporate everything into an executable with GUI, no need to switch codes



New quadscan routine: real historical data 
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• Function findq4(q3current) from old routine gives a rough estimate of medium Q4 value

• Scan through ∆Q4 = ± 0.1 around the medium value with trained NN

• Pick the Q4 value that gives smallest predicted Y RMS value

• Compare to actual Y RMS value



Test new quad scan routine on system: 2022/04/18

• NN with one hidden layer , ReLU and 
Tanh activation functions

• Trained NN accuracy on 54 data 
points: 93.65%

• Trouble getting the small Y RMS 
region features, maybe Y range is 
too large

• Tested 7 proposed Q3-Q4 combo 
settings

• Obtained Y RMS values around 0.3 –
0.4 mm range: satisfactory 
preliminary results 

• Successfully cut scan time by 50%

First 6 rounds: 54 saved data points with old script

Remaining 7 rounds: 7 data 
points using Q3-Q4 settings 

predicted by NN model
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Brightness control at the Alternating 
Gradient Synchrotron (AGS)
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• Alternating gradient / strong focusing principle: achieve 
strong vertical and horizontal focusing of charged 
particle beam at the same time 

• Accelerates proton to 33 GeV in 1960

• 12 super-periods (A to L), 240 main magnets

• Now serves as injector for Relativistic Heavy Ion 
Collider (RHIC) 
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Motivation: support for EIC Cooler
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• Electron cooling for the EIC requires small incoming emittances

• Necessary pre-cooler at RHIC injection energy (AGS extraction energy)

• Current AGS lacks systematic tuning routine, mostly hand tuned by 
operators

• Algorithm to better control beam in AGS will be helpful for future EIC cooler

• CeC experiment continues in February 2023



Orbit Response Matrix (ORM)
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• Mapping 𝑅 between closed orbit 
measurements and corrector settings

• 72 pick-up electrodes (PUE), 48 horizontal 
and vertical corrector pairs 

• Linear orbit response to corrector change: 
calculate 𝑅 matrix by changing each corrector 
pair separately

• Corrector current 𝐼 → angle 𝜃 by calibration 
factor

• Traditional orbit correction: ∆𝜃⃗ = 𝑅-# ∆𝑦⃗



MAD-X to BMAD translation
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• Successfully translated bare machine to BMAD: ramping in progress 
• Can use Python interface (pytao) to run simulations much easier

Floor plan
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Orbit Response vs. One Corrector (Sim.)



• Actual machine with errors (e.g. quadrupole gradient errors, corrector calibration 
errors, etc.) produce different 𝑅./0123/4 from model/reference machine 𝑅.(4/5

• Considering all possible sources of errors as a vector 𝜈, build response error model 
𝐽.(4/5

• Reconstruct any 𝜈 given known ∆𝑅 and 𝐽.(4/5

Use ORM to identify machine errors
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Reconstruct errors using SVD 
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• Traditional tuning routine: perform singular value decomposition (SVD) directly on 𝑅
• Machine error detection: perform SVD on 𝐽.(4/5

• Solve for ∆𝜐⃗ using ∆𝑅 = 𝐽.(4/5 ∆𝜐⃗, where 𝐽.(4/5 is not a square matrix

𝑛 = 𝑁6(33, 𝑚 = 𝑁789

∆𝑅: 48 × 72, 1

𝐽.(4/5: (3456, 𝑁/33(3)



Test case: quadrupole strength error
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• 24 quadrupoles (12 horizontal, 12 vertical), 1 in each super-period

• Linear orbit response to quadrupole kick change: calculate ∆𝑅 = 𝑅./0123/4 − 𝑅3/: by 
changing each quadrupole separately  → 𝐽;<= =

∆?!"
∆@#

• Quad kick defined with one variable KQH/KQV in MAD-X → variables in BMAD allow 
separate change of quad kicks



Test case 𝑱⃗𝒎𝒐𝒅𝒆𝒍 matrix (horizontal)
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• Calculated using ∆𝜐 = 40 for each 
quadrupole

• Agreement with MAD-X model 
(redefined every quad individually) 
was obtained
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Reconstruct errors using SVD 
• 𝑈 and	𝑉 are	square	orthogonal	matrices:	𝑈𝑈" = 𝑉𝑉" = 𝐼

• 𝑆 is an 𝑛𝑚 × 𝑁 matrix whose first 𝑁 diagonal elements are singular values 𝜎 of 𝐽.(4/5

• 𝑆A is pseudoinverse of 𝑆 whose first 𝑁 diagonal elements are #
B
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Test case: reconstruct errors with 𝑱⃗𝒎𝒐𝒅𝒆𝒍

Satisfactory reconstruction results



Neural Network for real-time ORM
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[9]

• Need dedicated machine time to measure 
ORM 𝑅./0123/4: at least 30 min

• Pre-measured 𝑅./0123/4 gets less accurate 
with time → orbit drift / brightness drop

• Update ORM with real-time data: build neural 
network model for 𝑅./0123/4 or 𝑅./0123/4-#

• Can be used to calculate ∆𝑅 for machine error 
reconstruction 



ORM NN model: training results
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Input 48 vertical corrector kick → Output 72 y orbit measured at BPM



Inverse ORM NN model: training results
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Input 72 y orbit measured at BPM → Output 42 vertical corrector kick



Conclusion
• Neural network can be trained as surrogate models for accelerator beam 

lines, possible to build digital twin for larger accelerator systems

• Conventional operational routines can be more efficient with help from 
machine learning

• It shows the significant benefit of incorporating machine learning algorithms 
into control systems at accelerator facilities
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