

First thoughts on a high-intensity neutral experiment

Radoslav Marchevski 31/03/2022

università degli studi FIRENZE

Introduction

- Running experiments in the kaon sector
 - ★ K⁺ physics: NA62 (K⁺→ π^+ υυ)
 - ★ K_L physics: KOTO (K_L $\rightarrow \pi^{0}$ υυ)
 - ★ K_s physics: LHCb (K_s $\rightarrow \mu^+\mu^-$)
- Fixed-target experimental program after LS3 described in Snowmass White Paper in preparation
- Medium-term: high-intensity K⁺ experiment
- Long-term: neutral beam
- Opportunity for the development of a broad kaon physics program
 - ★ Rare decays, LFV/LNV searches, Feebly interacting particles, QCD

- One of the possibilities in the long term
- $K \rightarrow \mu^+ \mu^-$ interference measurement is the main motivation
 - * Challenges on intensity, detector performance, background suppression
- A high-intensity kaon factory that could address the interference requires a much more generic machine
- Rewrite the PDG for K_s and K_L decays

- How to address $K_S-K_L \rightarrow \mu^-\mu^+$ interference experimentally?
- High-intensity K_S/K_L experiment
 - ✤ Thoughts on experimental design
 - * Toy MC: signal yield and background contamination
 - ★ Detector challenges
- Areas for future studies
- Conclusions

Experimental considerations: $K \rightarrow \mu^+ \mu^-$ interference

$$\left(\frac{d\Gamma}{dt}\right) \propto f(t) = C_L e^{-\Gamma_L t} + C_S e^{-\Gamma_S t} + 2\left[C_{sin}\sin(\Delta m t) + C_{cos}\cos(\Delta m t)\right] e^{-\Gamma t}$$

- We need asymmetric K⁰ and K⁰ beam: fixed-target experiment at the SPS?
 - ★ QCD production with a $K^\circ \overline{K}^\circ$ asymmetry (D ~ 0.3 for NA48)
 - ★ Dilution must be measured precisely (~ 1% precision) with K $\rightarrow \pi\pi$ decays
- Effective branching ratio for $K \rightarrow \mu^+ \mu^-$ interference ~ $3x10^{-10}$
- $O(10^{14})$ K decays are needed for a O(1%) measurement (~10% signal efficiency)
- Precise background control + good τ_s resolution

Thoughts on experimental design

Similar setup to NA62 but switch to neutral beamline: 6xNA62 intensity $\rightarrow 10^{19}$ POT/year

- Beam much closer to the detectors: high event rate
- First few meters after the target will be needed for collimation
- Large incident angle \rightarrow soft kaon momentum spectrum \rightarrow 30–40% geometrical acceptance

Experimental layout used

Signal yield for 10¹⁹ POT/year

- Yield for interference events can`t reliably be computed
 - ★ Depends heavily on the beam setup (incident angle + collimation) and the strong phase
 - ***** Expected number of interference decays in $0 6\tau_s \sim 500 2000$ events/year (no selection)
 - ★ Signal efficiency ~ $15\% \rightarrow 75 300$ events/year (after full selection)
 - ★ Optimization of the beam line essential to determine if the sensitivity is sufficient
- The fiducial volume of the experiment is larger than the first $6\tau_{s}$ (FV ~ 60m)
- Large number of K_s , K_L and Λ decays in the 60m FV (setup from previous slide):
 - ★ $K_L \sim 4x10^{13}$ decays/year
 - ★ $K_s \sim 3x10^{13}$ decays/year
 - ★ $\Lambda \sim 1 \times 10^{13}$ decays/year
- $O(10^{14})$ K_S/K_L decays can be collected over 5 years of data-taking
 - ★ Opportunities to measure and search for very rare K_L decays ($K_L \rightarrow \pi^0 l^+ l^-, K_L \rightarrow \mu e$)

Simulation: Kaon momentum spectrum

Beam simulation

* 400 GeV/c protons on a beryllium target producing K_L according to the Aetherton formula

$$\frac{d^2 N}{dp d\Omega} = BX \frac{(1-X)^A (1+5e^{-DX})}{\left(1 + \frac{(p\theta)^2}{C}\right)^4} \quad \text{with} \quad X = \frac{p}{E_0}$$

* The coefficients A,B,C and D taken for 400mm beryllium target from M. van Dijk, KLEVER target studies

Simulation: Fiducial volume

- Only the first 6 K_s lifetimes generated (1% of K_L decay in this region)
- FV starts after the collimator: ~ 6.5 m
 - ☆ Not much improvement possible
 - ★ Collimation in 6 6.5m might also be optimistic
 - ★ Feasibility studies required

Simulation: Signal mass resolution

- Smearing applied to the toy MC based on measured NA62 spectrometer momentum and angular resolution
- Signal region used: $0.492 0.504 \text{ GeV/c}^2$ (10 MeV/c² wide)
 - ★ Signal efficiency ~ 99%

Simulation: Signal after geometrical selection

■ Total geometrical acceptance: Acc ~ 40%

- After corrections (DAQ+Trigger+Detector efficiency+Full selection) ~ 15%
- * Similar to other experiments looking at the same channel and to efficiency loss in NA62
- * Extending the FV closer to the target can lead to significant gains but quite complicated
- The above plots represent statistics, corresponding to ~ 2 years of operation at 10¹⁹ POT/year, 12mrad incident angle, and 1mrad collimator opening

Backgrounds from kaon decays

- $K \rightarrow \mu^+ \mu^-$ signal signature (BR_{eff} ~ 3×10^{-10}): Two muons with invariant mass $M_{\mu\mu}$ peaking at the neutral kaon mass
- $K_S \rightarrow \pi^+ \pi^- \text{ decays } (BR \sim 0.7)$
 - ✤ PID suppression
 - ★ Kinematic suppression (wrong mass assignment)
 - ★ Can be used for normalization
- $\blacksquare K_{\rm S} \rightarrow \pi^+ \pi^- \rightarrow \mu^+ \mu^- (BR_{\rm eff} \sim 1 {\rm x10^{-4}})$
 - * Probability for $2x \pi \rightarrow \mu$ decays (momentum dependent)
 - ★ Kinematic suppression
 - Missing momentum
 - Vertex reconstruction
 - Extrapolated position at the primary target
- $K_L \to \mu^+ \mu^- \gamma (BR \sim 3.6 \times 10^{-7})$
 - ★ Kinematics (missing momentum)
 - ጵ Photon rejection

Background: Kinematic tails

- Muon mass assumed for both tracks
- Kinematic boundary for both backgrounds far from the signal region
 - ★ For $K_s \rightarrow \pi^+\pi^-$ both tracks have with wrong masses
 - * For $K_s \to \pi^+\pi^- \to \mu^+\mu^-$ correct masses but a lot of missing energy due to the two neutrinos
 - ★ Gaussian tails not a problem
 - Main issue will be the non-gaussian tails as is the case for the $K^+ \rightarrow \pi^+ \nu \nu$ measurement

Background: Non-gaussian kinematic tails

• Assuming the same smearing as for the non-gaussian tails of k3pi

- ★ Caveat: three pion tracks instead of two
- * Can be used as a first order proxy for the tails of the invariant mass distribution
- Smearing the invariant mass of the $K_s \rightarrow \pi^+\pi^- (\rightarrow \mu^+\mu^-)$ decays in the toy MC

Background: Non-gaussian kinematic tails

Non-gaussian tails estimate

- \star K_s $\rightarrow \pi^+\pi^- \sim 1 \times 10^{-5}$
- * $K_s \rightarrow \pi^+\pi^- \rightarrow (\mu^+\mu^-) \sim 1 \times 10^{-5}$

■ Safety factor 2 applied because the accidental rate will be higher than NA62

★ Requires more studies

Background contamination

- $K_S \rightarrow \pi^+ \pi^-$ decays
 - ★ BR ~ 0.7
 - * PID suppression ~ 10^{-4} /track (calo + muon detector)
 - * Kinematic suppression (wrong mass assignment + nongaussian tails) ~ 10^{-5}
 - ★ Expected S/B ~ 10
- $\blacksquare K_{S} \to \pi^{+}\pi^{-} \to \mu^{+}\mu^{-} \text{ decays}$
 - \Rightarrow BR_{eff} ~ 1x10⁻⁴ (2x pion decays)
 - ★ Kinematic suppression ~ 10⁻⁵
 - \star CDA + extrapolating the K_s to the primary target ~ 3x10⁻³
 - ★ Expected S/B ~ 2
- $K_L \rightarrow \mu^+ \mu^- \gamma$ (BR ~ 3.6x10⁻⁷): **TODO**
 - ★ Kinematics (missing momentum)
 - 🖈 Photon rejection
- Accidental muon pairs: TODO

Rate of charged particles

• Primary source of charged particles: K_s and Λ decays

- * Large integrated rates ~ 1 GHz (total surface ~ 3.7m^2)
- * Non-uniform rate: hot spots can reach ~ 700 kHz/cm^2

Rate of charged particles

- ★ High granularity + different technology as a function of radius
- ★ Interface between different detector materials
- ★ Solid state detectors should be the solution
- Similar to the solution required for detectors at the HL-LHC

Areas for future study: analysis and simulations

- **Feasibility:** $K_S K_L \rightarrow \mu^+ \mu^-$ interference measurement
 - ★ Can we collect $O(10^3)$ interference events in few years of operation (yes?)
 - ★ Background studies (accidentals and $K_L \rightarrow \mu^+ \mu^- \gamma$ backgrounds)
 - * Impact of background and fit procedure on the extraction of η ?
- Going beyond $K \rightarrow \mu^+ \mu^-$
 - * Large statistics for rare processes will be available
 - * O(10¹⁴) K_S/K_L decays \rightarrow allow studies of K_L $\rightarrow \pi^{0}l^{+}l^{-}$, K_L $\rightarrow e\mu$
 - ★ O(10¹³) Λ decays
- Sensitivity studies for a wide range of rare processes must be performed
 - ★ New ideas for observables are welcome
 - * Understand better the experimental requirements for a broad program!

Areas for future study: beam and detector

- Beam line for a future high-intensity K_S experiment
 - ★ Different options must be studied in detail (see L. Gatignon's talk)
 - ★ Muon rate, collimation, target, ...
- Tracking and calorimetry at the GHz regime: dedicated R&D program required
 - ☆ High-granularity detectors
 - ★ Fast detectors: O(100ps)
 - ★ High detection efficiency > 95%
 - * Hybrid technology (different techniques as a function of R)
 - * Calorimetry essential for $K_L \rightarrow \pi^0 l^+ l^-$
 - ★ Excellent momentum/energy resolution
 - ★ Readout challenges

Conclusions

- Interesting prospects to measure $K_S K_L \rightarrow \mu^+ \mu^-$ interference at CERN in the future
- A high-intensity neutral kaon experiment will have a very broad physics reach
 - \star Opportunity to rewrite the PDG for K_S and K_L decays
 - ★ Sensitivity to broad NP scenarios
- Huge technical challenges \rightarrow require O(10) years to be overcome
 - ★ Synergies with detector technology for HL-LHC
- NA62 will take $K^+ \rightarrow \pi^+ \nu \nu$ data until LS3
- Plan for high-intensity kaon experiments at CERN after LS3 is being formed
 - * This implies kaon physics remains in ECN3 (presently in competition with BDF)