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Motivation

Networks are everywhere.

Driven by technological advancements, data collection & IT systems have made it easy
to collect entity-level data.

When you have interactions between entities, often a natural way to model these
interactions and visualize the data is using networks (graphs).

* Social networks: Facebook & Twitter interactions

* Biology networks: Gene co-expressions

« Communication networks: Emails, Internet traffic, cell phone records

* Information networks: WWW

* Financial Networks: Loans or contracts between financial institutions



Change Detection in Dynamic Networks

Typically, networks are analyzed using statistics developed from the social network or
graph theory literatures:

 Degree, eigenvector centrality, diameter, shortest path, etc.

When faced with a time-series of networks, to detect changes in the underlying
system, one can inspect the time-series of network statistics.

Network statistics from a European banking network based on stock returns
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Objective and Challenges

Objective:

Detect key changes to the observed network series in real-time and faster than
benchmarks.

Challenges:
» Sparsity: Rarely see connections between nodes (banks), especially in crisis
environments.
Weighted: Edges in our application are weighted.
* Community Structure: Multiple core-periphery layers.
* Dynamic: Natural evolution to the system over time.
* Monitoring: Real-time change point detection.



Core-Periphery Topology

e Core-periphery structure are commonly found in networks.
* Wide-spread usage in economics and finance.

* Our data (interbank networks) have been observed to have CP structure (Fricke and Lux 2015).
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Proposed Solution

Solution: Penalized NMF + EWMA Monitoring

Sparsity: Penalized Poisson likelihood.
 Different penalty than the usual [; norm penalty.

Weighted Edges & Community Structure: NMF Model.
* Dynamic: Estimation done with a rolling window.

* Monitoring: Inspecting local deviations with EWMA control chart.



Multiple Core-Periphery Layers

Suppose A;; is composed of K multiple cores: A;; = )., Ag.c)

If each core has edge weights given by Poisson, Ag()~Poisson(uikvkj), then the
observed edges are also Poisson: A;;~Poisson(2;, Uj V).
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Proposed Model & Estimation

Log-likelihood given the observed network is:
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Following usual arguments, the update rules can be seen as a diagonally rescaled gradient descent:
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Monitoring: EWMA

1. Fit the factorization on A(t), A(t — 1), ...., A(t — W).
2. For each node, define the average difference between the estimate for the
current time point and the average in the rolling window:
Hau; = %Zk Ui (8) — Ug|
Hav; = %Zk [Viej () — Vil
3. Monitor k, combined deviation of each factor, with EWMA:
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Case Study:
The 2007-09 Financial Crisis in European Interbank Lending Data

e-MID dataset: loans between European banks from January 2006 through December 2012.
e 212 banks, 464772 edges over 84 months.

We construct monthly networks by connecting lender and borrowers.
 Edge is weighted by the transaction volume between two banks in that month.

Important Dates

* Pre-crisis: 2-Jan-06 : 8-Aug-07

Crisis 1 (Bear Stearns): 9-Aug-07 : 12-Sep-08
Crisis 2 (Lehman): 16-Sep-08 : 1-Apr-09

Crisis 3 (Sovereign Debt): 15-Nov-11: 6-Sep-12



1 eMID Data Change Detection - Decomposition Method

—&— EWMA scores
R e S l | | tS ©  Changes Detected

o
o)
I

o
o
I
=8

Dissimilarity
o
SN
T

Comparison among change point detection
methods using EWMA monitoring on the e-MID

0.2 [%

End of GFC
Start of GFC

Debt Crisis Peak
oL | | Bankrpptcy of LehmanBrothers | | |
2006 2007 2008 2009 2010 2011 2012 2013
network data, Time (date)
. eMID Data Change Detection - DeltaCon Method
—©6— EWMA scores
Our proposed NMF outperforms! e
> 0.9
£
€085
8
[a]

0.8

0.75 o
Start of GFC Debt Crisis Peak
o7 L1 | | Ban krpp y of LehmanB(others | | |
' 2006 2007 2008 2009 2010 2011 2012 2013
Time (date)
. eMID Data Change Detection - NMF Method
—©6— EWMA scores
©  Changes Detected
0.8 -
£
s 0.6 —
S -
G e
204
(=]
0.2
End of GFC
Start of GFC Debt Crisis Peak
oL | | Ban krpptcy of Lehmaanthers | | |
2006 2007 2008 2009 2010 2011 2012 2013

Time (date)



Decomposing: Who caused the change?
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Emittance Preservation of Electron Microscopes



AberratiOn (Krivanek notation (Krivanek et al., 1999))
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Schnitzer, N., Sung, S. H., & Hovden, R. (2020).
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Potential Solution

* A mapping from Ronchigrams to emittance
* Deep learning approaches, e.g. CNN

* A surrogate model to optimize for best emittance
* Uncertainty quantified machine learning approaches, e.g. Gaussian Processes



Thank you!
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