Change-Point Detection in Core-Periphery Networks: A Case Study on Interbank Lending Networks

Center for Bright Beams BDC Meeting, May 26th, 2022

Desheng Ma Cornell University

This material is based upon work supported by the National Science Foundation under Grant No. 1633158.

Content

- Personal background
- A previous Project (with Prof. Shawn Mankad at Cornell University)
 - Change point detection in networks
- Planned project at CBB
 - Emittance preservation of electron microscopes

Personal Background

- Desheng Ma
- PhD student in Applied Physics, Cornell
- B.S. Nankai University, China
- Research experience:
 - Ultracold Atoms (Will Lab, Columbia)
 - Ferroelectrics (China)
 - Cosmology (Bachelor thesis)
 - Networks (Cornell)
 - Microscopy...

Change-Point Detection in Core-Periphery Networks: A Case Study on Interbank Lending Networks

Motivation

Networks are everywhere.

Driven by technological advancements, data collection & IT systems have made it easy to collect entity-level data.

When you have interactions between entities, often a natural way to model these interactions and visualize the data is using networks (graphs).

- Social networks: Facebook & Twitter interactions
- Biology networks: Gene co-expressions
- Communication networks: Emails, Internet traffic, cell phone records
- Information networks: WWW
- Financial Networks: Loans or contracts between financial institutions

Change Detection in Dynamic Networks

Typically, networks are analyzed using statistics developed from the social network or graph theory literatures:

• Degree, eigenvector centrality, diameter, shortest path, etc.

When faced with a time-series of networks, to detect changes in the underlying system, one can inspect the time-series of network statistics.

Objective and Challenges

Objective:

Detect key changes to the observed network series in real-time and faster than benchmarks.

Challenges:

- Sparsity: Rarely see connections between nodes (banks), especially in crisis environments.
- Weighted: Edges in our application are weighted.
- Community Structure: Multiple core-periphery layers.
- Dynamic: Natural evolution to the system over time.
- Monitoring: Real-time change point detection.

Core-Periphery Topology

- Core-periphery structure are commonly found in networks.
 - Wide-spread usage in economics and finance.
 - Our data (interbank networks) have been observed to have CP structure (Fricke and Lux 2015).

Proposed Solution

Solution: Penalized NMF + EWMA Monitoring

- Sparsity: Penalized Poisson likelihood.
 - Different penalty than the usual l_1 norm penalty.
- Weighted Edges & Community Structure: NMF Model.
- Dynamic: Estimation done with a rolling window.
- Monitoring: Inspecting local deviations with EWMA control chart.

Multiple Core-Periphery Layers

Suppose A_{ij} is composed of K multiple cores: $A_{ij} = \sum_k A_{ij}^{(k)}$

If each core has edge weights given by Poisson, $A_{ij}^{(k)} \sim \text{Poisson}(u_{ik}v_{kj})$, then the observed edges are also Poisson: $A_{ij} \sim \text{Poisson}(\sum_k U_{ik}V_{kj})$.

Proposed Model & Estimation

Log-likelihood given the observed network is:

$$l(U, V|A) \propto \sum_{i,j} \left(A_{ij} \log\left(\sum_{k} U_{ik} V_{kj}\right) - \sum_{k} U_{ik} V_{kj} \right) + \lambda \sum_{k,j} f(\frac{V_{kj}}{\sigma_k}),$$

$$\sigma_k = \sqrt{\frac{1}{n} \sum_{j} V_{kj}^2} \text{ and } f(x) = \log(x^2 + 1).$$

Following usual arguments, the update rules can be seen as a diagonally rescaled gradient descent:

$$U_{ik} \leftarrow U_{ik} \frac{\sum_{j} A_{ij} V_{kj} / (UV)_{ij}}{\sum_{j} V_{kj}}$$
$$V_{kj} \leftarrow V_{kj} \frac{\sum_{j} A_{ij} U_{ik} / (UV)_{ij} + \frac{V_{kj} \sqrt{n} \sum_{j} V_{kj}}{\left(\sum_{j} V_{kj}^2\right)^{3/2}}}{\sum_{i} U_{ik} + \frac{\sqrt{n}}{\left(\sum_{j} V_{kj}^2\right)^{1/2}}}.$$

Monitoring: EWMA

1. Fit the factorization on A(t), A(t - 1), ..., A(t - W).

2. For each node, define the average difference between the estimate for the current time point and the average in the rolling window:

$$\mu_{dU_i} = \frac{1}{K} \sum_k |U_{ik}(t) - \overline{U}_{ik}|$$
$$\mu_{dV_j} = \frac{1}{K} \sum_k |V_{kj}(t) - \overline{V}_{kj}|.$$

3. Monitor κ , combined deviation of each factor, with EWMA:

$$\kappa = \frac{\sum_{i} \mu_{dU_{i}} \mu_{dV_{i}}}{n}$$

Case Study:

The 2007-09 Financial Crisis in European Interbank Lending Data

e-MID dataset: loans between European banks from January 2006 through December 2012.

• 212 banks, 464772 edges over 84 months.

We construct monthly networks by connecting lender and borrowers.

• Edge is weighted by the transaction volume between two banks in that month.

Important Dates

- Pre-crisis: 2-Jan-06 : 8-Aug-07
- Crisis 1 (Bear Stearns): 9-Aug-07: 12-Sep-08
- Crisis 2 (Lehman): 16-Sep-08 : 1-Apr-09
- Crisis 3 (Sovereign Debt): 15-Nov-11: 6-Sep-12

Results

Comparison among change point detection methods using EWMA monitoring on the e-MID network data $_{\rm o}$

Our proposed NMF outperforms!

Decomposing: Who caused the change?

Emittance Preservation of Electron Microscopes

Aberration (Krivanek notation (Krivanek et al., 1999))

$$\chi(lpha, \phi) = rac{2\pi}{\lambda} \sum_{n,m} rac{C_{n,m} lpha^{n+1} \cos(m(\phi - \phi_{n,m}))}{n+1}$$

Schnitzer, N., Sung, S. H., & Hovden, R. (2020).

Microscopy and Microanalysis (2020), **26**, 921–928 doi:10.1017/S1431927620001841

Microscopy_{AND} Microanalysis

Original Article

Optimal STEM Convergence Angle Selection Using a Convolutional Neural Network and the Strehl Ratio

Noah Schnitzer^{1,2} , Suk Hyun Sung¹ and Robert Hovden^{1,3*}

¹Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI 48019, USA; ²Department of Materials Science and Engineering, Cornell University, Ithaca, NY 14853, USA and ³Applied Physics Program, University of Michigan, Ann Arbor, MI 48109, USA

Potential Solution

- A mapping from Ronchigrams to emittance
 - Deep learning approaches, e.g. CNN
- A surrogate model to optimize for best emittance
 - Uncertainty quantified machine learning approaches, e.g. Gaussian Processes

Thank you!

[1] Ma, D., & Mankad, S. (2020). Change Detection in Core-Periphery Networks: A Case Study on Detecting Financial Crises in the Interbank Market. Available at SSRN 3742790.

[2] Schnitzer, N., Sung, S. H., & Hovden, R. (2020). Optimal STEM Convergence Angle Selection Using a Convolutional Neural Network and the Strehl Ratio. Microscopy and Microanalysis, 26(5), 921-928.