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Summary

• Experiment of Bayesian Optimization for Trajectory Alignment at 
Low Energy RHIC electron Cooling (LEReC)

• Machine Learning for improving Coherent electron Cooling (CeC) 
operations



Low Energy RHIC electron Cooling
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• 704 MHz electron bunches (grouped into 9 MHz macro-bunches) are produced from the 
photocathode and accelerated in the SRF cavity to the designed energy (1.6 MeV, 2 MeV).

• Those e-bunches are delivered to the two cooling sections (20 meter each) in RHIC’s yellow 
and blue rings, where they co-travel with ion bunches.

• Ions experience a friction force from the co-propagating electrons, reducing momentum and 
angular spread.

• Designed to increase luminosity of ion beam in RHIC, successful luminosity improvement in 
2020 and 2021 runs.

[1]



Motivations
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• Account for possible errors in BPM Measurement
• An independent way to optimize the cooling performance

Method
• Bayesian Optimization (BO): a powerful tool for finding the extrema of objective 

functions that are expensive to evaluate. [2]



LEReC Experiment Settings
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• Only the first 4 BPMs in the Yellow cooling section are considered

• Cooling rate is defined as the decreasing speed of transverse ion beam size δ :
λ = ⁄(1/δ)(𝑑δ 𝑑𝑡)

• Ions are assumed to stay in the center position (x=0, y=0)

• More negative λ → faster cooling rate → use BO to maximize −𝝀

Cooling in Blue RHIC ring

Cooling in Yellow RHIC ring



Initial Sampling
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• Input: readings of 4 BPMs, each has a range of [-3, 3] mm

• Objective: cooling rate −𝜆

• 40 initial samples were taken, the inputs go through the entire range in 
incremental steps with added randomness

• The objective exhibits a pattern, it favors input positions around 0

[1]



Noise in Signals
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• The objective contains division by a point 
value δ :

λ = ⁄(1/δ)(𝑑δ 𝑑𝑡)

• Large noise presents in real-time 
measurement of δ

• The objective is unstable even when 
inputs stay constant

• The BO algorithm had trouble converging

[1]



Smoothing by Moving Average
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Number Number

• New definition for cooling rate: λ′ = ⁄(1/0δ)(𝑑δ 𝑑𝑡)

• A new parameter: number of points to average

• Different number produce different algorithm behaviors

[1]



Experiment Results
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Number

• Results are generated using an average window of 15 points

• BO algorithm converged quickly (reaches a close neighborhood after 3 
steps) to an optimum solution, which corresponds to the center position of 
(x = 0,y = 0)

[1]



Electron trajectory optimization
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• The algorithm can tune electrons from the farthest positions to the 
center and maintain the trajectories

[1]



Conclusion
• The BO method is very effective in optimizing the cooling performance at 

LEReC.

• It also verifies the correctness of the traditional orbit correction program and 
the BPM calibrations.

• It opens many possibilities of trying different machine learning methods on 
optimizing performance for control tasks in the RHIC complex, as well as the 
future EIC.

11



Coherent electron Cooling
• Designed to cool 26.5 GeV/u ion beam circulating in RHIC’s yellow ring. 

• CeC CW SRF accelerator with unique SRF electron gun generates electron beams with quality 
sufficient for the current experiment and for the future EIC cooler.

• Electron bunches are compressed to peak current of 50 – 100 A and accelerated to 14.5 MeV.

• Accelerated electron beam is transported through an achromatic dogleg to merge with ion beam 
in RHIC.

• Interaction between ions and electron beam occurs in the common section.

[3]
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Machine Learning for improving CeC
operation
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• Motivation
• Tuning of system parameters (i.e. solenoids and trims) are currently done blindly to 

obtain desirable beam status
• Optimization is currently done by genetic algorithm (GA), which takes too long

• Goals for ML algorithms
• Virtual diagnostics: establish mapping between tuning parameters and YAG screen 

images for image prediction and analysis
• Multi-objective optimization: optimize peak current, slice emittance, and slice energy 

spread of the beam at the same time

• Useful techniques
• Neural network: surrogate model trained with history data to provide direct, accurate 

mapping between specified input parameters and output results
• Bayesian optimization: optimize analytically intractable/computationally intensive 

objective with as few steps as possible, can be used for single-objective and multi-
objective problems



CeC Beamline & Current Projects
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CeC accelerator / Low Energy 
Beam Transport (LEBT)

Time-Resolved Diagnostic 
Beamline (TRDBL)

Common Section with RHIC

1. Input scan for emittance 
profile with Impact-T 

simulation

2. Establish beamline model 
with Bmad/Tao and develop 

emittance measurement 
algorithm

[4]



Low Energy Beam Transport (LEBT)
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Beam line: 3 cavities (Gun, Buncher, SRF Linac), 6 solenoids, 1 final drift
Monitors: 2 Profile Monitors (Yag 1, Yag 2), 2 BPMs (BPM 1, BPM 2)

[5]



LEBT Gun and Buncher
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Target final KE: 1.25 MeV 
Target energy (amplitude): 168 kV

Target phase: -13° from zero crossing
Final KE: ~ 1.21 MeV 



Optimized beam: emittance and energy
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Optimized beam: long. phase space 
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Phase 704 MHz cavity to produce final beam with target KE = 14.0525 MeV, 𝛾 = 28.5, and 
core section with small energy spread (flat center)



Optimized beam: slice statistics

19

Core part of the beam has < 1.5 um emittance, ~ 1e-4 slice energy spread, ~ 40 – 50 A peak current



Core emittance calculation
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• Python script groups beam from the center into 20%, 50%, 80%, and 100% of total particles, 
then calculate rms emittance for each group



LEBT Input scan: parameters
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Name Unit Range Low High
SRF Linac voltage V ± 5% 2.278e7 2.518e7
SRF Linac phase deg ± 1.5° 288.6 291.6

LEBT solenoid 1 strength T ± 1% 0.033 ± 1%
LEBT solenoid 2 strength T ± 1% -0.036 ± 1%
LEBT solenoid 3 strength T ± 1% 0.035 ± 1%
LEBT solenoid 4 strength T ± 1% -0.038 ± 1%
LEBT solenoid 5 strength T ± 1% 0.047 ± 1%
SRF Linac displacement mm [-5, 5] in x, y direction
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Input scans: SRF linac voltage
Name Unit Range Low High

SRF Linac voltage V ± 5% 2.278e7 2.518e7

20%

80%

50%

100%



Sensitivity: SRF linac voltage
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𝑓𝑖𝑡 = −2.3378×10!" 𝑥 + 4.104



LEBT input scan: emittance sensitivity
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Slope =
𝑑 (emittance)
𝑑 (parameter)

Name Slope
SRF Linac voltage -2.3378e-8 mm-mrad/V
SRF Linac phase -0.03085 mm-mrad/deg

LEBT solenoid 1 strength 559 mm-mrad/T
LEBT solenoid 2 strength -304 mm-mrad/T
LEBT solenoid 3 strength -444 mm-mrad/T
LEBT solenoid 4 strength -314 mm-mrad/T
LEBT solenoid 5 strength 499 mm-mrad/T
SRF Linac x displacement -0.0233 mm-mrad/mm
SRF Linac y displacement 0.0284 mm-mrad/mm



Problem with gun, new laser profile…
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Version 1

Version 2



Time-resolved Diagnostic Beamline 
(TRDBL)
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Matching 
TripletQuads 1 - 4

Triplet 
BPM

Triplet Profile Monitor

BPM 1

1.3 GHz 
Cavity

30° Dipole

BPM 2

Trim 1

Trim 2

BPM 3

Profile Monitor 1

Beam Dump

Beam line: 7 quadrupoles (3 + 4), 2 trims, 1 transverse deflecting cavity, 1 dipole
Monitors: 2 Profile Monitors, 4 BPMs

[4]



Bmad simulation of TRDBL
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Transverse deflecting cavity (TDC)
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• A TDC converts the beam’s longitudinal distribution to transverse distribution which is measurable

Q1 Q2 Q3 Q4

Focusing Lattice

Longitudinal
Slices YAG

Transvers Defecting
Cavity 

time

tim
e

Parameter Value
TDC RF frequency 1.3 GHz

TDC RF voltage 100 – 140 kV
Bunch length ~ 70 ps
Beam energy 14.56 MeV

Beam size 𝜎# at Yag without TDC ~ 0.2 – 0.4 mm

Phase TDC to zero crossing phase

[7]



TDC simulation results: time profile
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• TDC provide a time dependent transverse kick to the beam
• After TDC, the beam’s time information convert to Y direction
• In Bmad, a crab cavity with tilt = pi/2 is used

Time

Time

TDC on

[6]



Dipole simulation results: energy profile
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• Dipole provide an energy dependent bend to the beam
• After dipole, the beam’s longitudinal phase space information convert to X direction 

After DPEnergy
Spread

Energy Spread

[6]



Emittance measurement
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[7]



Quadrupole scan
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• Scan diagnostic Q3 and Q4 together, observe beam at Yag3
• For each Q3 value, find Q4 value that gives best vertical focusing at Yag3

𝑀 = [𝑀() *+ ,-./][𝑀()][𝑀(/ *+ ()] 𝑀(/



Quadrupole scan data fitting
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Use numpy.polyfit to find fitting parameters

𝑓𝑖𝑡 = [𝜎&& , 2𝜎&' , 𝜎'']

𝜀 = 𝑓𝑖𝑡 0 ∗ 𝑓𝑖𝑡 2 − (
𝑓𝑖𝑡[1]
2 )'

𝜀 = 0.382 mm−mrad

𝜀( = 𝛾𝜀 = 10.887 mm−mrad

𝛾 = 28.5



Ongoing: speed up quad scan with ML
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• Time-consuming quad scan: 9 
points for each Q3 value, 13 
rounds for parabola fitting →>
100 measurements

• Possibility of training a model to 
establish mapping between 
quadrupole settings and beam 
size

• Useful for faster general beam 
tuning & as starting point of 
optimization

• Forward vs. Inverse model

[8]

Artificial Neural Network

𝑄3
𝑄4
⋮

𝜎O
𝜎P
⋮

Desired beam 
properties

Quadrupole (or other 
tunable) settings

Inverse Model

Forward Model



Quadscan model: simulation data
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• Forward model: three layers with ReLU and 
Tanh activation functions

• Input: Q3, Q4 strength (k1 values)
• Output: RMS beam size, focus on y direction



Quadscan model: training results
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Training: 50 out of 260 data pairs, testing (shown below): 210 out of 260 data pairs
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Thank you!

38


