

@BrookhavenLab

Exploring machine learning techniques to improve cooling performance at RHIC

Lucy Lin

Advisor: Georg Hoffstaetter Yuan Gao, Kevin Brown, Xiaofeng Gu, John Morris, Sergei Seletskiy (LEReC) Yichao Jing, Kai Shih, Jun Ma, Irina Petrushina, Gang Wang (CeC)

3/31/2022

Summary

 Experiment of Bayesian Optimization for Trajectory Alignment at Low Energy RHIC electron Cooling (LEReC)

 Machine Learning for improving Coherent electron Cooling (CeC) operations

Low Energy RHIC electron Cooling

 Designed to increase luminosity of ion beam in RHIC, successful luminosity improvement in 2020 and 2021 runs.

- 704 MHz electron bunches (grouped into 9 MHz macro-bunches) are produced from the photocathode and accelerated in the SRF cavity to the designed energy (1.6 MeV, 2 MeV).
- Those e-bunches are delivered to the two cooling sections (20 meter each) in RHIC's yellow and blue rings, where they co-travel with ion bunches.
- Ions experience a friction force from the co-propagating electrons, reducing momentum and angular spread.

Motivations

- Account for possible errors in BPM Measurement
- An independent way to optimize the cooling performance

Method

 <u>Bayesian Optimization</u> (BO): a powerful tool for finding the extrema of objective functions that are expensive to evaluate. [2]

LEReC Experiment Settings

- Only the first 4 BPMs in the Yellow cooling section are considered
- Cooling rate is defined as the decreasing speed of transverse ion beam size δ : $\lambda = (1/\delta)(d\delta/dt)$
- Ions are assumed to stay in the center position (x=0, y=0)
- More negative $\lambda \rightarrow$ faster cooling rate \rightarrow use BO to maximize $-\lambda$

Initial Sampling

- Input: readings of 4 BPMs, each has a range of [-3, 3] mm
- Objective: cooling rate $-\lambda$
- 40 initial samples were taken, the inputs go through the entire range in incremental steps with added randomness
- The objective exhibits a pattern, it favors input positions around 0

Noise in Signals

• The objective contains division by a point value δ :

 $\lambda = (1/\delta)(d\delta/dt)$

- Large noise presents in real-time measurement of $\boldsymbol{\delta}$

- The objective is unstable even when inputs stay constant
- The BO algorithm had trouble converging

Smoothing by Moving Average

- New definition for cooling rate: $\lambda' = (1/\overline{\delta})(\overline{d\delta}/dt)$
- A new parameter: number of points to average
- Different number produce different algorithm behaviors

Experiment Results

- Results are generated using an average window of 15 points
- BO algorithm converged quickly (reaches a close neighborhood after 3 steps) to an optimum solution, which corresponds to the center position of (x = 0,y = 0)

Electron trajectory optimization

• The algorithm can tune electrons from the farthest positions to the center and maintain the trajectories

Conclusion

- The BO method is very effective in optimizing the cooling performance at LEReC.
- It also verifies the correctness of the traditional orbit correction program and the BPM calibrations.
- It opens many possibilities of trying different machine learning methods on optimizing performance for control tasks in the RHIC complex, as well as the future EIC.

Coherent electron Cooling

• Designed to cool 26.5 GeV/u ion beam circulating in RHIC's yellow ring.

- CeC CW SRF accelerator with unique SRF electron gun generates electron beams with quality sufficient for the current experiment and for the future EIC cooler.
- Electron bunches are compressed to peak current of 50 100 A and accelerated to 14.5 MeV.
- Accelerated electron beam is transported through an achromatic dogleg to merge with ion beam in RHIC.
- Interaction between ions and electron beam occurs in the common section.

Machine Learning for improving CeC operation

- Motivation
 - Tuning of system parameters (i.e. solenoids and trims) are currently done blindly to obtain desirable beam status
 - Optimization is currently done by genetic algorithm (GA), which takes too long
- Goals for ML algorithms
 - <u>Virtual diagnostics</u>: establish mapping between tuning parameters and YAG screen images for image prediction and analysis
 - <u>Multi-objective optimization</u>: optimize peak current, slice emittance, and slice energy spread of the beam at the same time
- Useful techniques
 - <u>Neural network</u>: surrogate model trained with history data to provide direct, accurate mapping between specified input parameters and output results
 - <u>Bayesian optimization</u>: optimize analytically intractable/computationally intensive objective with as few steps as possible, can be used for single-objective and multiobjective problems

CeC Beamline & Current Projects

Common Section with RHIC

Time-Resolved Diagnostic Beamline (TRDBL)

2. Establish beamline model with Bmad/Tao and develop emittance measurement algorithm CeC accelerator / Low Energy Beam Transport (LEBT)

1. Input scan for emittance profile with Impact-T simulation

Low Energy Beam Transport (LEBT)

Beam line: 3 cavities (Gun, Buncher, SRF Linac), 6 solenoids, 1 final drift Monitors: 2 Profile Monitors (Yag 1, Yag 2), 2 BPMs (BPM 1, BPM 2)

LEBT Gun and Buncher

Optimized beam: emittance and energy

Optimized beam: long. phase space

Phase 704 MHz cavity to produce final beam with target KE = 14.0525 MeV, γ = 28.5, and core section with small energy spread (flat center)

Optimized beam: slice statistics

Core part of the beam has < 1.5 um emittance, ~ 1e-4 slice energy spread, ~ 40 – 50 A peak current

Core emittance calculation

• Python script groups beam from the center into 20%, 50%, 80%, and 100% of total particles, then calculate rms emittance for each group

LEBT Input scan: parameters

Name	Unit	Range	Low	High
SRF Linac voltage	V	± 5%	2.278e7	2.518e7
SRF Linac phase	deg	± 1.5°	288.6	291.6
LEBT solenoid 1 strength	Т	<u>± 1%</u>	0.033 ± 1%	
LEBT solenoid 2 strength	Т	± 1%	-0.036 ± 1%	
LEBT solenoid 3 strength	Т	± 1%	0.035 ± 1%	
LEBT solenoid 4 strength	Т	± 1%	-0.038 ± 1%	
LEBT solenoid 5 strength	Т	± 1%	0.047 ± 1%	
SRF Linac displacement	mm	[-5, 5] in x, y direction		

Input scans: SRF linac voltage

Sensitivity: SRF linac voltage

 $fit = -2.3378 \times 10^{-8} x + 4.104$

LEBT input scan: emittance sensitivity

Slope = $\frac{d \text{ (emittance)}}{d \text{ (parameter)}}$

Name	Slope	
SRF Linac voltage	-2.3378e-8 mm-mrad/V	
SRF Linac phase	-0.03085 mm-mrad/deg	
LEBT solenoid 1 strength	559 mm-mrad/T	
LEBT solenoid 2 strength	-304 mm-mrad/T	
LEBT solenoid 3 strength	-444 mm-mrad/T	
LEBT solenoid 4 strength	-314 mm-mrad/T	
LEBT solenoid 5 strength	499 mm-mrad/T	
SRF Linac x displacement	-0.0233 mm-mrad/mm	
SRF Linac y displacement	0.0284 mm-mrad/mm	

Problem with gun, new laser profile...

Time-resolved Diagnostic Beamline (TRDBL)

Beam line: 7 quadrupoles (3 + 4), 2 trims, 1 transverse deflecting cavity, 1 dipole Monitors: 2 Profile Monitors, 4 BPMs

Bmad simulation of TRDBL

TQJ TBPM

ТРМ

9

101 102

04 BPM1

63

02

TCAV

BPM2

YAG3

Ь

BPM3

ΡM1

Transverse deflecting cavity (TDC)

• A TDC converts the beam's longitudinal distribution to transverse distribution which is measurable

TDC simulation results: time profile

- TDC provide a time dependent transverse kick to the beam
- After TDC, the beam's time information convert to Y direction
- In Bmad, a crab cavity with tilt = pi/2 is used

[6]

800

Dipole simulation results: energy profile

- Dipole provide an energy dependent bend to the beam
- After dipole, the beam's longitudinal phase space information convert to X direction

[6]

Emittance measurement

$$\begin{split} [\Sigma] &= \begin{bmatrix} \sigma_{11} & \sigma_{12} \\ \sigma_{12} & \sigma_{22} \end{bmatrix} \qquad [M] = \begin{bmatrix} m_{11} & m_{12} \\ m_{21} & m_{22} \end{bmatrix} \\ & \because & [\Sigma'] = [M] [\Sigma] [M]^T \\ & \therefore & \sigma'_{11} = m_{11}^2 \sigma_{11} + m_{11} m_{12} 2 \sigma_{12} + m_{12}^2 \sigma_{22} \\ & \text{Define } \nu = \frac{m_{11}}{m_{12}^2} \ , \ \sigma'_{\nu} = \frac{\sigma'_{11}}{m_{12}^2} \\ & \sigma'_{\nu}(\nu) = \sigma_{11} \nu^2 + 2 \sigma_{12} \nu + \sigma_{22} \end{split}$$

Calculate emittance with parabola fit parameters

$$\varepsilon = \sqrt{\sigma_{11}\sigma_{22} - \sigma_{12}^2}$$

Quadrupole scan

- Scan diagnostic Q3 and Q4 together, observe beam at Yag3
- For each Q3 value, find Q4 value that gives best vertical focusing at Yag3

Quadrupole scan data fitting

Ongoing: speed up quad scan with ML

- Time-consuming quad scan: 9 points for each Q3 value, 13 rounds for parabola fitting → > 100 measurements
- Possibility of training a model to establish mapping between quadrupole settings and beam size
- Useful for faster general beam tuning & as starting point of optimization
- Forward vs. Inverse model

Quadscan model: simulation data

Quadscan model: training results

Training: 50 out of 260 data pairs, testing (shown below): 210 out of 260 data pairs

References

- [1] Y. Gao, W. Lin, et al., "Applying Bayesian Optimization to Achieve Optimum Cooling at the Low Energy RHIC Electron Cooling System", Physical Review Accelerators and Beams 25, 014601 (2022).
- [2] E. Brochu, V. M. Cora, and N. de Freitas, A Tutorial on Bayesian Optimization of Expensive Cost Functions, with Application to Active User Modeling and Hierarchical Reinforcement Learning (2010), arXiv:1012.2599.
- [3] V. Litvinenko et al., "Coherent electron Cooling (CeC) as an EIC cooler", EIC Collaboration Workshop: Promoting Collaboration on the Electron-Ion Collider, Oct. 9 2020. <u>https://indico.cern.ch/event/949203/contributions/3989899/attachments/2119592/3566940/CeC_for_EIC.pdf</u>
- [4] V. Litvinenko et al., "Coherent electron Cooling (CeC) experiment at RHIC", CAD MAC, December 1, 2020. <u>https://www.rhichome.bnl.gov/RHIC/Runs/RhicRun20AuAuCeC.pdf</u>
- [5] Y. Jing, "Beam dynamics in CeC accelerator", CeC review, Jan. 13-15 2021.
- [6] Y.H. Wu, "Time-resolved diagnostic beam-line", Jan. 14 2021.
- [7] K. Shih, "Slice Emittance Measurement on CeC Diagnostic Beamline", Jan. 21 2022.
- [8] J. Edelen, "Inverse Models for Implicit Tuning of the ATR Line and Machine Learning @ RadiaSoft", BNL Machine Learning Team meeting, Mar. 25 2022.

Thank you!

