

CrYogenic Brightness-Optimized Radiofrequency Gun (CYBORG) Beamline

Gerard Lawler¹, Obed Camacho¹, Atsushi Fukusawa¹, Siddarth Karkare², Zenghai Li³, Walter Lynn¹, Nathan Majernik¹, Pratik Manwani¹, Jake Parsons¹, Sami Tantawi³, Yusuke Sakai¹, Arathi Suraj¹, Oliver Williams¹, and James Rosenzweig¹ ¹ UCLA, Los Angeles, CA 90095 ² ASU, Tempe, AZ, 85281 ³ SLAC, Menlo Park, CA, 94025

- Motivations and background, relation to UCXFEL and CBB themes
- 2. RF and gun design
- 3. Cryogenics and phase 1 diagnostics
- 4. Phase 2 diagnostics
- 5. Status & future outlooks

- 1. Motivations and background, relation to UCXFEL and CBB themes
- 2. RF and gun design
- 3. Cryogenics and phase 1 diagnostics
- 4. Phase 2 diagnostics
- 5. Status & future outlooks

UC-XFEL Concept

- Ultra-compact xray free electron laser (UCXFEL) concept, 40 m
- Multiple sections dependent on cryogenic operation
- Photoinjector and associated cryostat most relevant for now

UC-XFEL Concept

- Ultra-compact xray free electron laser (UCXFEL) concept, 40 m
- Multiple sections dependent on cryogenic operation
- Photoinjector and associated cryostat most relevant for now

- TopGun previous development in Sband
- Based on normal conducting

Next generation high brightness electron beams from ultrahigh field cryogenic rf photocathode sources

JB Rosenzweig, A Cahill, V Dolgashev, C Emma... - Physical Review Accelerators and Beams, 2019

- TopGun previous development in Sband
- Based on normal conducting

Next generation high brightness electron beams from ultrahigh field cryogenic rf photocathode sources

JB Rosenzweig, A Cahill, V Dolgashev, C Emma... - Physical Review Accelerators and Beams, 2019

CYBORG Function 1: Cavity Structure Tests

- Reentrant cavities
- High shunt impedance
- Lower RF pulse heating
- Tested to cryogenic (LN2)
 temperatures
- Independently coupled cells

Design and demonstration of a distributed-coupling linear accelerator structure

S Tantawi, M Nasr, Z Li, C Limborg, P Borchard - Physical Review Accelerators and Beams, 2020

Reentrant Cavity Beam Dynamics

- Consideration of beam dynamics based on high spatial harmonic content
- introduction of strong second order focusing effects
- enhancing the emittance compensation by providing stronger focusing on the beam both as it leaves the cathode and as it is accelerated toward an emittance dominated state downstream
- 45 nm rad emittance at 100 pC and 20 A

RR Robles et al. *Physical Review Accelerators and Beams* 24 (6), 063401

Parameter	Unit	Value
Charge	pC	100
Laser spot size (precut)	μm	151
Laser spot size (post-cut)	μm	76
Injection phase	0	44
Laser length	ps	5.8
Peak cathode field	MV/m	240
Bucking solenoid field	T	0.58
Compensation solenoid field	Т	0.48
Compensation solenoid FWHM	cm	7.4
Compensation solenoid center	cm	12.5
Booster gradient	MV/m	52
Booster entrance	m	1.6
Booster phase	0	90

 Cu photocathodes emission temp ranges from ~100 meV to 1 eV depending on wavelength

Emission properties of photocathodes change @

 $k_h T_c = (h\nu - \phi_{\text{eff}})/3$

Brightness scaling (below)

cryogenic temperatures (<93K)

• Where $hv \gg \phi$ eff scaling as below

• From UXFEL NJP, note 6D brightness importance

$$B_{e,b} \approx \frac{2ec\varepsilon_0}{k_B T_c} (E_0 \sin \phi_0)^2$$

D. Dowell and J. Schmerge, Phys. Rev. ST Accel. Beams 12, 074201 (2009).

Vacuum

3)Electrons

escape to vacuum

Potential barrier

due to spillout electrons

Metal

2)Electrons

Optical depth

∿photon

1)Photon

absorbed

occupied

valence

states

move to surface

UCLA PBPL

CYBORG Function 2: Cryogenic cathode test

Energy

Cryogenic metallic photoemission

- Near threshold emission from tail of Fermi-Dirac distribution
- Now including full FD distribution with temperature dependence (right)
- hv → \$\overline\$ \$\overline\$
- Very low QE, so higher laser fluence needed

3.6

QE

10⁻⁵

10-6

10⁻⁷

10-8

- Easiest if Cu satisfies all cathode requirements
- Extremely challenging due to non-linear emission
- 100 pC from 75 um rms spot size at 250 MV/m accelerating field, 38 nm-rad intrinsic emittance → 130 meV MTE, ~10¹² e⁻/cm^2
- 50 fs pulse could be better for 5 ps pulse
- Need to characterize cathodes in these extreme condition

J. K. Bae, I. Bazarov, P. Musumeci, S. Karkare, H. Padmore, and J. Maxson, J. Appl. Phys. 124, 244903 (2018).

Cryogenic semiconductor cathodes

- High QE photocathode, many orders of magnitude higher than Cu, promising
- Alkali antimonides, Cs2Te

- Field emission could be an issue due to lower work functions/roughness.

- Cs/GaN or n-doped polar GaN
 - High QE in UV, high work function
 - Could result in very low MTE
 - never been tested in photoinjectors
 - Potential vacuum concerns
- Reduction of MTE at cryogenic temps observed

G. S. Gevorkyan et al., Phys. Rev. Accel. Beams, vol. 21, p. 093 401, 9 Sep. 2018.

L. Cultrera et al., Appl. Phys. Lett. 103, 103504 (2013).

- Schematic diagram similar (right)
- Test all components, independent function, synchronization etc.
- Active conduction cryocooling cryostat development setup (below) down to 40K thus far

- 1.6 cell cavity w/ reentrant design
- Cryogenic solenoid in cryostat

- repetition rate of 100 Hz
- nominal 300 nsec RF pulses
- operating temperature of 27 K
- RF dissipation of 11 W, requiring over 0.5 kW cooling power
- Maximize shunt impedance and consequently efficiency

- 1.6 cell cavity w/ reentrant design
- Cryogenic solenoid in cryostat

- repetition rate of 100 Hz
- nominal 300 nsec RF pulses
- operating temperature of 27 K
- RF dissipation of 11 W, requiring over 0.5 kW cooling power
- Maximize shunt impedance and consequently efficiency

- 1. Motivations and background, relation to UCXFEL and CBB themes
- 2. RF and gun design
- 3. Cryogenics and phase 1 diagnostics
- 4. Phase 2 diagnostics
- 5. Status & future outlooks

- Reentrant cavity with high shunt impedance Tantawi-style
- Cryogenic temperature provided RF stability and cathode studies
- 2.9 factor improvement of Q_0 from 300K to 77K
- Cryogenic load lock and replaceable cathode plug coupling

E field magnitude

Parameters	Value
Launch field	120-250 MV/m
Operating temp	45K-77K
# of cells	1/2
Cavity frequency	5.712 GHz
Beta	4 @ 77K
Q_ext	6056
Q_0	24750

- 5.695 GHz @ 295K (room temp)
- 5.712 GHz @ 77K
- 5.713 GHz @ 45K

- Slater perturbation theory gives frequency change from small displacement of one surface S_i in normal direction from fields on surface
- U stored energy
- Default 10 um
- For surfaces of high field tolerance reduced to 5 um (detuning over |0.2| MHz w/ 10 um, most |10s| kHz)
- Total about 1.6 MHz from following

$$\Delta f_i = \Delta s_i \frac{f_0}{4U} \int_{S_i} \left(\mu |H_0|^2 - \epsilon |E_0|^2 \right) dS$$
$$U = \frac{1}{2} \int_V \left(\mu |H_0|^2 + \epsilon |E_0|^2 \right) dV$$

$$\Delta f_{tot} = 1 - 2 \text{ MHz} > \sqrt{\Sigma_i (\Delta f_i)^2}$$

Sensitive Surfaces

0.110

 $\mathbf{5}$

 $\mathbf{5}$

1.21

• Choke on dummy port for RF diagnostic probe

Cavity RF Filling

- Forward compatibility needed for INFN style mini puck
- Pegasus knife edge seal (left) difficult at cryogenic temperatures
- Cavity configuration options to right considered

- Plug directly into cavity
- Useful for 1.6 cell to max gradient
- Good for cathode tests
- High gradient (> 120 MV/m) but lower than plug alone

- No cathode exchange
- Highest achievable gradients

Cathode integration cont.

- For 1st phase of test bed, CF flange sealed off w/ blank from back of cavity and test copper cathode
- Later test involving UHV transfer of cathodes from transfer chamber into gun cell
- Molybdenum substrate puck difficult to achieve knife edge seal UCLA Pegaus experience
- Calculation of radii of hole and plug below and stress from contraction on plug to right and stress calculations below
- Cornell-style leaf spring plug holder complex
- Simplest setup for properties tests at cryogenic temperature (right)

- Drawings with fully removable backplane based on FERMI gun design
- Comeb fabrication completed (en route)

- Drawings with fully removable backplane based on FERMI gun design
- Comeb fabrication completed (en route)

 Resurrected Thale Cband klystron several MW power sufficient

RF Power

- Motivations and background, relation to UCXFEL and CBB themes
- 2. RF and gun design
- 3. Cryogenics and phase 1 diagnostics
- 4. Phase 2 diagnostics
- 5. Status & future outlooks

- Simplified phase 1 of cryogenic test bed design
- Completion condition: copper cavity QE measurement down to cryo temps

- Very low emittance beamline
- Goal to identify any and eliminate all sources of unanticipated emittance growth
- Try to eliminate solenoid field crossover error

• Goals:

- -SHI vibration isolation
- -Waveguide setup

 $-\mathsf{UHV}$

- -CYBORG cooldown & temperature stability
- -LL and high power RF tests
- Optimize RF pulse heating + cooling

- Goals:
 - -SHI vibration isolation
 - -Waveguide setup
 - $-\mathsf{UHV}$
 - -CYBORG cooldown & temperature stability
 - -LL and high power RF tests
 - Optimize RF pulse heating + cooling

- Goals:
 - -SHI vibration isolation
 - -Waveguide setup
 - $-\mathsf{UHV}$
 - -CYBORG cooldown & temperature stability
 - -LL and high power RF tests
 - Optimize RF pulse heating + cooling

- 117cm east, 125cm north, for load lock arms (future config)
- Currently 0.5" from 7' bunker opening ceiling
- Flexible waveguide to lower
- Approx 5m x 1m parallel area

- 117cm east, 125cm north, for load lock arms (future config)
- Currently 0.5" from 7' bunker opening ceiling
- Flexible waveguide to lower
- Approx 5m x 1m parallel area

- Configuration 1 for copper cathode test, load locked blanked
- Drop in section for cryostat v2

• 26 kg

- Initial thermal simulation 11 W cooling from cavity side face (from thermal braid number conductance)
- 295K BC on outer flange
- 1 W heating from up stream flange
- 65 K minimum

- Main sources of heat leaks to consider
- For quicker and easier to interpret cool down time estimate replace realistic conduction geometries w/ homogenous materials with effective thermal properties

ID	Description	Materials	Equivalent Area	Equivalent Power
001	6" plug flange	Stainless steel (CF flange), edge welded bellows	436 mm^2	< 1 W
002	2.75" downstream flange	Stainless steel (CF flange), edge welded bellows	85 mm^2	< 1 W
003	Waveguide	Satinless steel	588 mm^2	Approx 10 W
004	Supports	Stainless steel, aluminum, G10	TBD	TBD
005	Diagnostic probes	Copper wiring of various gauges	50 mm^2	5 W
006	Alignment rails	TBD	TBD	TBD
007	Radiation	N/A	25000 mm^2	< 1 W
008	Pumping on dummy side			

- Goals:
 - Setup and align optics
 - Measure cryogenic copper QE
- To do list:
 - Finish solenoid
 - Solenoid stand design
 - Remake dipole faces
 - Measure quad fields
 - Optimize beam dynamics
 - Finish laser path

Laser Room

- Inherited laser from SLAC former Gun Test Facility
- Space beneath main bunker
- To setup UV conversion transport upstairs into bunker

Image of laser path here

- Inherited laser from SLAC former Gun Test Facility
- Space beneath main bunker
- To setup UV conversion transport upstairs into bunker

- Inherited laser from SLAC former Gun Test Facility
- Space beneath main bunker
- To setup UV conversion transport upstairs into bunker

- Motivations and background, relation to UCXFEL and CBB themes
- 2. RF and gun design
- 3. Cryogenics and phase 1 diagnostics
- 4. Phase 2 diagnostics
- 5. Status & future outlooks

- Phase 2 beamline additions (2nd solenoid and TEM grid) for emittance measurement w/ copper backplane then high brightness cathode plugs, 18 months
- Completion condition: copper cathode QE measurement down to cryo temps
- Parallel development: load lock UHV

- Designed lower aberration quadrupole faces
- Possible additional source of emittance growth

Tapered Modular Quadrupole Magnet to Reduce Higher-Order Optical Aberrations Y Shao, B Naranjo, G Lawler, JB Rosenzweig - 2021

- Same regardless of config 3, load lock and phase 2 diagnostics
- Test of back plane plug into reentrant small Cband
- Cooling test with large additional heat leaks
- Completion condition: load lock plug QE measurement down to cryo temps

- Interface 1 may be sufficient for cooling connection
- Interface 2, 3 and 4 are loose
- Interface 5 temperature dependent
- Interface 6 could be made with an additional shoulder but area smaller

Cathode Plug Interface

- Interface 1 may be sufficient for cooling connection
- Interface 2, 3 and 4 are loose
- Interface 5 temperature dependent
- Interface 6 could be made with an additional shoulder but area smaller

Engineering Designs

- Pegasus version has no plug guides rails and holds plug in w/ arm
- Cryo version uses guiding rails and decoupling section w/ an extra gap

Lab and Bunker space

- Motivations and background, relation to UCXFEL and CBB themes
- 2. RF and gun design
- 3. Cryogenics and phase 1 diagnostics
- 4. Phase 2 diagnostics
- 5. Status & future outlooks

 Future phases after phase 3 include use for measurements and refinement for cathode measurements, temperatures down to 20K from the 40K phase 1-3 temperature goals, and xband cavity addition possibly for bunch length measurements

D. Marx et al. Phys. Rev. Accel. Beams 21, 102802 (2018).

Timeline Proposal

- 1. UCXFEL photoinjector needs stepping stone
- 2. Studies of high brightness cathodes in extreme conditions (low temperature, high field) necessary
- 3. CYBORG beamline test bed necessary for these studies progressing nominally

Thank You

- D. Dowell and J. Schmerge, Phys. Rev. ST Accel. Beams 12, 074201 (2009).
- M. C. Divall, E. Prat, S. Bettoni, C. Vicario, A. Trisorio, T. Schietinger, and C. P. Hauri, Phys. Rev. ST Accel. Beams 18, 033401 (2015).
- T. Vecchione, Proceedings of FEL2013 (JACOW, 2013), TUPSO83.
- J. Feng, J. Nasiatka, W. Wan, S. Karkare, J. Smedley, and H. A. Padmore, Appl. Phys. Lett. 107, 134101 (2015).
- L. Cultrera, I. Bazarov, A. Bartnik, B. Dunham, S. Karkare, R. Merluzzi, and M. Nichols, Appl. Phys. Lett. 99, 152110 (2011).
- L. Cultrera, S. Karkare, B. Lillard, A. Bartnik, I. Bazarov, B. Dunham, W. Schaff, and K. Smolenski, Appl. Phys. Lett. 103, 103504 (2013).
- G. S. Gevorkyan, S. Karkare, S. Emamian, I. V. Bazarov, and H. A. Padmore, Phys. Rev. Accel. Beams, vol. 21,p. 093 401, 9 Sep. 2018.
- I. Bazarov et al., Phys. Rev. Lett. 102, 104801 (2009)
- J.B. Rosenzweig, A. Cahill, B. Carlsten et al.Nuclear Inst. and Methods in Physics Research, A 909 (2018) 224–228
- D. H. Dowell and J. F. Schmerge, Phys.Rev. ST Accel. Beams, vol. 12, p. 074 201, 7 Jul. 2009.
- J. Maxson, L. Cultrera, C. Gulliford, and I. Bazarov, Applied Physics Letters, vol. 106, no. 23, p. 234 102, 2015
- H. Lee, X. Liu, L. Cultrera, B. Dunham, V. O. Kostroun, and I. V. Bazarov Rev. Sci. Instrum. 89, 083303 (2018).
- J B Rosenzweig et al 2020 New J. Phys. 22 093067
- G. E. Lawler, A. Fukasawa, N. Majernik, M. Yadav, A. Suraj, and J. B. Rosenzweig, "Rf testbed for cryogenic photoemis sion studies", presented at the 12th Int. Particle Accelera tor Conf. (IPAC'21), Campinas, Brazil, May 2021, paper WEPAB096
- D. Marx et al. Phys. Rev. Accel. Beams 21, 102802 (2018).