

X-ray FELs based on high-gradient conventional acceleration

Nathan Majernik UCLA CBB Compact Light Sources Symposium 2022-06-03

UCLA

Synchrotrons - 3rd generation light sources

- Originally a parasitic process for HEP
- Now big science: hundreds of beamlines and billions of dollars worldwide
- High brilliance but incoherent

X-ray protein crystallography has been a powerful tool but it has substantial limitations. What if there's a better way?

- First HXR demonstration: LCLS in 2009
- 10¹⁰ times brighter than synchrotrons, coherent, and fs-resolution
- ~km footprint, ~10 GeV, and ~\$1B price

-Unlike 3rd gen, no option to scale; go big or go home

Electron beam self-organization: The XFEL instability

XFEL enabled science

- Coherent, ultra-bright x-rays open up entirely new avenues for research at Å and fs scales
 - Reconstruction of incoherent matter; no need to crystallize
 - "Diffraction-before-destruction" principle
 - -Holy grail: single particle imaging
 - Unlike cryo-EM, can study dynamic, non-equilibrium states
 - Important, otherwise impossible, results have been produced in atomic physics, high energy density physics, material science, chemistry, biology (virology!), and more

Dark side: limited access

- -Only small fraction of proposals are granted beamtime
- -Strong incentive to publish results
- -Even harder to get beamtime to validate/reproduce

- [Chapman2006] demonstrates ultrafast, coherent imaging
- Top left: diffraction pattern from single shot
- Top right: computationally reconstructed mask
- Bottom left: diffraction pattern from the second shot, illustrating the obliteration of the mask by the first shot and the "diffraction-beforedestruction" principle

Ultra-compact x-ray free electron laser

UC-XFEL recipe

- Short period undulator
 - -Linac length $\propto \sqrt{\lambda_u}$, undulator length $\propto \lambda_u^{5/6}$ -Cryogenic magnets improve K_0
- Start with high brightness beam
 - Need to make up for lower y
 - -Cryo-copper photoinjector
- Increase linac gradient
 - Cryo-cooling and manifold coupling further reduce linac length
- Preserve high brightness
 - -Atypical compression via IFEL
 - -Short overall length limits collective effects
 - -Microbunching mitigates wakes

Ultra-compact x-

C-band photoinjector cryostat 36 GHz linearizer 3 m cryo C-band accelerating section Passive dechirper 5 m

- Cooling copper to cryogenic temperatures enhances a number of material properties
 - -Reduced resistivity
 - -Higher yield strength
 - -Reduced coefficient of thermal expansion
- Net result is to substantially increase breakdown field
 - -500 MV/m threshold
 - Dark current onset limits usable gradient to ~300 MV/m
- Also substantial interest for linear collider

Cryogenic linac

- Cryo-copper linac at c-band designed for 125 MV/m; 1 GeV in 8 meters!
- New "manifold coupling" concept from SLAC
 - Allows more control over linac characteristics, greater performance, and increased shunt impedance Initial tests at 77 K successful

- Cryo cooling the photoinjector enhances brightness in two ways $-B \propto E_0^{2/T}$
- C-band design injects at 240 MV/m
 - -Contrast with LCLS at 60 MV/m; anticipate 50x brighter
 - -Highly optimized cavity design to minimize surface magnetic fields
 - -Substantial higher harmonic content improves RF focusing
 - -100 pC @ 55 nm-rad (38 nm-rad at cathode)

Photoinjector simulations

(nm

Radial Emittance,

Norm.

 B_{5D} (A/m²)

Beam Brightness,

4

3

2

-2

0

Time (ps)

- More extensive photoinjector simulations
- Spatial harmonics improve launch field to surface field ratio
- Challenges in simulating these relatively high charge (100 pC) but bright beams
 - -Short-range effects difficult to capture accurately and computationally efficiently
- Gun can also be magnetized for linear collider and DLA applications

2

[Robles, R. R., Camacho, O., Fukasawa, A., Majernik, N., & Rosenzweig, J. B. (2021). Versatile, High Brightness, Cryogenic Photoinjector Electron Source. Physical Review Accelerators and Beams 24.6 (2021): 063401.]

36 GHz linearizer

c-band section

First and second chicanes

Passive dechirper

5 m cryo C-l accelerating s

IFEL modulator

- Conventional approach to bunch compression uses chicanes
 - $-R_{56}$ shears longitudinal phase space, compressing chirped beam
 - -Major issue is coherent synchrotron radiation (CSR) which induces emittance growth
 - -Sometimes tolerable, but we can't afford the loss
- A laser heater is one way of addressing this
 - -Introduces an uncorrelated energy spread, reducing MBI growth
 - -Although this technique helps, it necessarily adds energy spread which is not ideal

- Inverse FEL (IFEL) and enhanced SASE (ESASE) refer to the same technique described by [Zholents2005]
 - Copropagate resonant laser with beam in wiggler to induce energy modulations

IFEL/ESASE

- Then pass through chicane to convert to current modulations (much lower R₅₆ required and conducted at higher energy)
- -Reduced energy spread and emittance growth
- -Bonus: microbunch train mitigates resistive wake effects
- Proof of concept experiment at SLAC: XLEAP

UCLA

Compression for UC-XFEL

- Beam is accelerated to 400 MeV then linearized by 34 GHz (6th harmonic) structure
- Opposed chicanes compress from 20 A to 400 A with <15% emittance growth
- 3. A corrugated structure passively removes remaining chirp
- Beam is modulated at 10 µm by 145 MW laser and accelerated to 1 GeV
- 5. Energy modulations are converted to 4 kA microbunches by the final chicane

5m, short period cryo-undulator

Final chicane

Experiment hutch

Electron spectrometer and beam dump

K-B focusing mirrors

• Extant XFELs use "conventional" undulators

- Hybrid or PPM Halbach, few cm period, NdFeB or SmCo magnets, room temperature
- Short period undulators
 - Reduce the required energy for target λ_{r}
 - Linac active length $\propto \sqrt{\lambda_u}$
 - -Reduce the gain length
 - Undulator length $\propto \lambda_u^{5/6}$

Name	$\lambda_u \; [\mathrm{mm}]$	Array type	B_{peak} [T]	K_0
LCLS $[5]$	30	Hybrid	1.3	3.7
SACLA [118]	18	Hybrid	1.3	2.2
European XFEL (SASE 1) [119]	36	Hybrid	1.0	3.3
European XFEL (SASE 2) [119]	48	Hybrid	0.6	2.8
European XFEL (SASE 3) [119]	80	Hybrid	0.4	3.3
PAL-XFEL (HXU) [120]	26	Hybrid	0.8	2.0
PAL-XFEL (SXU) [120]	35	Hybrid	1.0	3.3
Swiss XFEL [121]	15	Hybrid	0.9	1.2
FLASH [122]	27	PPM	0.5	1.2
Fermi FEL-1 [123]	65	PPM, APPLE-II	0.9	4.0
Fermi FEL-2 [123]	50	PPM, APPLE-II	0.9	2.8

Short period undulators

- What sets the lower bound on $\lambda_u?$
 - -Beam brightness
 - -Fabrication

UCLA

- -Field strength
- -Resistive wall wakefields
- Past: 9 mm cryo-undulator
 - Demonstrated fields to >2 T
- Present: few mm comb fabrication
 - -Our recent paper explored this for both PPM and hybrid arrays
 - -EDM machining and larger assembly unit cell
- Future (?): 100s µm MEMS
 - All elements formed in place by photolithography and related techniques

[RosenzweigPC

X-ray optics

- LCLS has a 400 m optical baseline for some x-ray optics
 - Dictated by need to avoid damage from high peak fluences over the course of electronic thermalization time
 - Although additional engineering considerations arise from high average power, this is not the determining factor for baseline
- Two factors allow UC-XFEL to employ a much shorter solution
 - -Lower per-shot photon counts (<5%)
 - Smaller electron bunches are more diffractive.
 No brightness is lost but larger spots are present on mirrors sooner
- SXR UC-XFEL requires <10 m

- Start-to-end simulations from photocathode through detector
 - -Model-based system engineering and control
- Key aspects
 - Beam dynamics: space-charge, IBS, MBI, CSR, wakefields, BBU
 - FEL performance including strong collective beam effects
 - -Multi-physics model of x-ray optical system
- Design and control with modern tools
 - Powerful capabilities with smaller human intervention

Much existing activity at XFELs worldwide

[Courtesy of S. Biedron]

UCLA

SXR performance

Parameter	Units	Value
Energy	GeV	1.0
Energy spread	%	0.1
Micro-bunch charge	pC	14.2
Micro-bunch rms length, σ_z	nm	424
Peak current	kA	4.0
Normalized emittance, $(\epsilon_{n,x}, \epsilon_{n,y})$	nm-rad	(80, 60)
Mean spot size, σ_r	$\mu{ m m}$	4.9
Undulator period, λ_u	mm	6.5
Peak undulator field, B_0	Т	1.0
Undulator parameter, K_u		0.60
Undulator length	m	4
Radiation fundamental, λ_1	Å	10.0
Photon energy	keV	1.2
Gain length, $L_{\rm g,3D}$	m	0.21
Radiation peak power	GW	25
Radiation rms bandwidth	%	0.046
Radiation pulse energy/ μ bunch	$\mu { m J}$	19.2
μ bunch count		6
Radiation pulse energy/train	$\mu \mathrm{J}$	115.2
Number of photons/train		6×10^{11}
ρ	10^{-3}	3.1
$ ho_{ m 3D}$	10^{-3}	1.4
$L_{ m g,3D}/L_{ m g,1D}$		2.2

SXR cost and footprint

UCLA

Leveraging the present for the future

Parameter	Sloan	NSF Mid-scale RI-1	SXR UC-XFEL
Photoinjector	Cryogenic C-band 1.6-cell	Existing S-band hybrid	Cryogenic C-band 1.6-cell
Acceleration	$1 \times \sim 1 \text{ m cryogenic}$	$3 \times \sim 1$ m cryogenic	$8 \times 1 \text{ m}$ cryogenic
	C-band linac section	C-band linac section	C-band linac section
Compression	Chicane or IFEL	Velocity bunching and	CSR compensating chicane
		long wavelength IFEL	pair and IFEL
Undulator	Room temperature,	Cryogenic,	Cryogenic,
	conventional	short period	short period
Footprint	12 m	18 m	40 m
Budget	\$3M	\$12.5M	\$40M
Energy [MeV]	90	300	1000
Energy spread [%]	0.02	0.05	0.1
Total beam charge [pC]	100	100	100
Peak current [A]	200	1500	4000
Emittance [nm-rad]	60	400	70
Undulator period [mm]	20.6	6.5	6.5
Undulator field [T]	0.54	1	1
Undulator length [m]	2	4	4 [Majer Demo
Radiation wavelength [nm]	520	11	1 using
Radiation energy [eV]	2.4	110	1200 techno
Gain length [m]	0.12	0.23	0.21 SAMC
Peak power [MW]	160	170	25000 Accele

[Majernik, N., *et al.* Demonstration FELs using UC-XFEL technologies at the SAMURAI Laboratory. *12th Int. Particle. Accelerator Conf.*, 2021.]

Parameter	Sloan
Photoinjector	Cryogenic C-band 1.6-cell
Acceleration	$1 \times \sim 1 \text{ m cryogenic}$
	C-band linac section
Compression	Chicane or IFEL
Undulator	Room temperature,
	conventional
Footprint	12 m
Budget	\$3M
Energy [MeV]	90
Energy spread [%]	0.02
Total beam charge [pC]	100
Peak current [A]	200
Emittance [nm-rad]	60
Undulator period [mm]	20.6
Undulator field [T]	0.54
Undulator length [m]	2
Radiation wavelength [nm]	520
Radiation energy [eV]	2.4
Gain length [m]	0.12
Peak power [MW]	160

- \$3M budget
- 100 MeV beam lasing at 520 nm
- Same 1.6-cell cryogenic gun as SXR
- Compression via chicane <u>or</u> IFEL

- Uses existing 2 meter conventional undulator
- Testing resistive wall wakefields
- Emphasis on pushing limits of cryo-RF

Parameter	NSF Mid-scale RI-1
Photoinjector	Existing S-band hybrid
Acceleration	$3 \times \sim 1$ m cryogenic
	C-band linac section
Compression	Velocity bunching and
	long wavelength IFEL
Undulator	Cryogenic,
	short period
Footprint	18 m
Budget	\$12.5M
Energy [MeV]	300
Energy spread [%]	0.05
Total beam charge [pC]	100
Peak current [A]	1500
Emittance [nm-rad]	400
Undulator period [mm]	6.5
Undulator field [T]	1
Undulator length [m]	4
Radiation wavelength [nm]	11
Radiation energy [eV]	110
Gain length [m]	0.23
Peak power [MW]	170

- \$12.5M budget
- 300 MeV beam lasing at 11 nm
- Uses existing S-band hybrid gun
- Several cryogenic linac segments
- Compression via long wavelength IFEL
- Uses same, short period

cryogenic undulator as SXR case

Emphasis on limiting technology risk

Only EUV FEL in USA

- Useful wavelength for scientific end users

 Potential to access x-rays; first UC-XFEL!

Parameter	Sloan	NSF Mid-scale RI-1	SXR UC-XFEL
Photoinjector	Cryogenic C-band 1.6-cell	Existing S-band hybrid	Cryogenic C-band 1.6-cell
Acceleration	$1 \times \sim 1 \text{ m cryogenic}$	$3 \times \sim 1$ m cryogenic	8 × 1 m cryogenic
	C-band linac section	C-band linac section	C-band linac section
Compression	Chicane or IFEL	Velocity bunching and	CSR compensating chicane
		long wavelength IFEL	pair and IFEL
Undulator	Room temperature,	Cryogenic,	Cryogenic,
	conventional	short period	short period
Footprint	12 m	18 m	40 m
Budget	\$3M	\$12.5M	\$40M
Energy [MeV]	90	300	1000
Energy spread [%]	0.02	0.05	0.1
Total beam charge [pC]	100	100	100
Peak current [A]	200	1500	4000
Emittance [nm-rad]	60	400	70
Undulator period [mm]	20.6	6.5	6.5
Undulator field [T]	0.54	1	1
Undulator length [m]	2	4	4 [Majer Demo
Radiation wavelength [nm]	520	11	1 using
Radiation energy [eV]	2.4	110	1200 techno
Gain length [m]	0.12	0.23	0.21 SAMC
Peak power [MW]	160	170	25000 Accele

[Majernik, N., *et al.* Demonstration FELs using UC-XFEL technologies at the SAMURAI Laboratory. *12th Int. Particle. Accelerator Conf.*, 2021.]

High gain IR FEL

- Steppingstone²
 - No tech overlap with eventual UC-XFEL
 - Strong overlap with both demonstrators
- 18 MeV, compression by velocity bunching – Beam from S-band hybrid photoinjector
- Hogan undulator
 - Same energy as original paper [Hogan1998]
 - No upgrade to focusing lattice required
- 136 MW at 13 microns
 - Unlike original, expect to saturate!

New Journal of Physics The open access journal at the forefront of physics

ACCEPTED MANUSCRIPT • OPEN ACCESS

An Ultra-Compact X-Ray Free-Electron Laser

James Rosenzweig¹, Nathan Majernik¹, River Robles¹, Gerard Andonian¹, Obed Camacho¹, Atsushi Fukasawa¹, Anshul Kogar¹, Gerard Lawler¹, (John) Jianwei Miao², Pietro Musumeci³, Brian Naranjo², Yusuke Sakai⁴, Robert Candler⁵, Ben Pound⁶, Claudio Pellegrini⁷, Claudio Emma⁸, Aliaksei Halavanau⁹, Jerome Hastings⁸, Zenghai Li⁸, Mamdouh Nasr⁸, Sami G Tantawi¹⁰, Petr Anisimov¹¹, Bruce Carlsten¹², Frank Krawczyk¹³, Evgenya Simakov¹³, Luigi Faillace¹⁴, Massimo Ferrario¹⁵, Bruno Spataro¹⁵, Siddharth Karkare¹⁶, Jared Maxson¹⁷, Yanbao Ma¹⁸, Jonathan S Wurtele¹⁹, Alex Murokh²⁰, Alexander Zholents²¹, Alessandro Cianchi²², Daniele Cocco²³ and Bas Van der Geer²⁴ – Hide full author list

Accepted Manuscript online 21 August 2020 • © 2020 The Author(s). Published by IOP Publishing Ltd on behalf of Deutsche Physikalische Gesellschaft and the Institute of Physics

MAJOR PROPOSALS TO NSF, DOE UNDERWAY

- Promising path for UC-XFEL explored in detail
 - –80 page, 37 author paper published in New Journal of Physics
 - Quasi-CDR
 - Science case strongly emphasized but outside the scope of this talk
 - Enabled by high gradient cryo-RF, a cryo-cooled photoinjector, short period undulators, and advanced beam transport/manipulation
 - High brightness beams are a central focus and necessity!
 - Synergistic with other accelerator applications, including HEP
- Future work includes:
 - -Extending concept to other parts of parameter space
 - -Exploring zero MTE limit
 - -Wakefield accelerated drivers