

Beam Dynamics & Control (BDC) Discussion of Objectives & Prioritization (part I)

Optimal Outcome: <u>Methods</u> for **beam transport** that preserve beam quality of **x100 brighter beams** in **linear accelerators** and electron microscopes and **x10 brighter** beams in **storage rings**.

https://cbb.cornell.edu/research/beam-dynamics-and-control/beam-dynamics-and-control-team-and-projects

Objectives for Phase II

Beam Dynamics and Control Team and Projects

Our Team:

roject lities (PL/ Postdoc of Grad Student):	Theme Leaders:	Graduate Students:
 Advanced beam manipulations enabled by novel computational techniquesin beam physics (Musumeci / Cropp, Isen, Guo) 	<u>Young-Kee Kim</u> , U Chicago	Aasma Aslam, UNM
Application of Machine Learning in Compact Photoinjectors (Biedron / Aslam)	<u>David Muller,</u> Cornell <u>Philippe Piot,</u> NIU	Eric Cropp, UCLA Cameron Duncan, Cornell
Brightness limiting effects of point to point space charge (Kim / Gordon)		Austin (AJ) Dick, NIU
Demonstrating Emittance Preservation in Ultrafast Electron Micro-Diffraction (Maxson / Duncan)	Senior Investigators:	Gevork Gevorkyan, ASU
Development of the ASU-DC cryogun (Karkare / Gevorkyan)	<u>Ivan Bazarov,</u> Cornell	Matt Gordon, U Chicago
 Exploring the Impact of Radiation Field on Brightness (Piot / Al Marzouk) 	<u>Sandra Biedron,</u> UNM	Jack Isen, UCLA
 Feedback System and Isochronous Lattice Development towards an Optical Stochastic Cooling Stability Experiment (Bazarov / Levenson) 	<u>Georg Hoffstaetter,</u> Cornell	Gerard Lawler, UCLA
Microscope Tuning by ML and Emittance Optimization (Muller / Zhang)	<u>Siddharth Karkare,</u> ASU	Samuel Levenson, Cornell
Operating hadron coolers with Machine Learning (Hoffstaetter / Lin)	Young-Kee Kim, U Chicago	William Li, Cornell
Optical Transport and Beam Manipulation for Optical Stochastic Cooling (Piot / Dick)	Jared Maxson, Cornell	Lucy Lin, Cornell
• Optimization of ultra-compact free-electron laser performance with very low MTE photocathodes (Rosenzweig / Majernik, Lawler)	<u>David Muller,</u> Cornell <u>Pietro Musumeci,</u> UCLA	
• Strongly nonlinear space-charge in photoinjectors with collimating apertures (Maxson / Li)	<u>Philippe Piot,</u> NIU <u>James Rosenzweig</u> , UCLA	

Post Docs: Nathan Majernik, UCL/ Afnan Al Marzouk, NIU Chenyu Zhang, Cornel

- Demonstrating Emittance Preservation in Ultrafast Electron Micro-Diffraction (Maxson / Duncan)
- Development of the ASU-DC cryogun (Karkare / Gevorkyan)

Project Titles (PI / Postdoc or Grad Student):

- Exploring the Impact of Radiation Field on Brightness (Piot / Al Marzouk)
- Feedback System and Isochronous Lattice Development towards an Optical Stochastic Cooling State Experiment (Bazarov / Levenson)
- Microscope Tuning by ML and Emittance Optimization (Muller / Zhang)
- Operating hadron coolers with Machine Learning (Hoffstaetter / Lin)
- Optical Transport and Beam Manipulation for Optical Stochastic Cooling (Piot / Dick)
- Optimization of ultra-compact free-electron laser performance with very low MTE photocathodes (Rosenzweig / Majernik, Lawler)
- Strongly nonlinear space-charge in photoinjectors with collimating apertures (Maxson / Li)

- Objective 1 (Conserve): Probe the ultimate limits of brightness conservation in the presence of collective effects in low MTE photoinjector beamlines.
 - Deliverable: The sources of residual emittance growth in select optimized beam lines (to be completed by Spring 2022).
 - Brightness limiting effects of point to point space charge (Kim / Gordon)
 - Demonstrating Emittance Preservation in Ultrafast Electron Micro-Diffraction (Maxson / Duncan)
 - Development of the ASU-DC cryogun (Karkare / Gevorkyan)
 - Deliverable: Cathode longevity testing capability with beam to support Theme 1 developments (to complete by Fall 2023).
 - No work on this?
 - Deliverable: A list of the parameters that determine emittance growth in low MTE photoinjector beam lines (to be completed by Fall 2024).

- **Objective 2 (Cool):** Develop methods for cooling beams using optical stochastic cooling to increase beam luminosity in next-generation colliders.
 - Deliverable: Proof of principle demonstrations of key elements of optical stochastic cooling at IOTA and CESR (to be completed by Spring 2023)
 - Feedback System and Isochronous Lattice Development towards an Optical Stochastic Cooling Stability Experiment (Bazarov / Levenson)
 - Optical Transport and Beam Manipulation for Optical Stochastic Cooling (Piot / Dick)
 - Deliverable: Configurations capable of the very high cooling rates needed for use in a future colliders. (to to be completed by Fall 2025)
 - Same as above techniques developed will be applied to novel configurations
 - Deliverable: Single-pass correction of beam distortions and beam diagnostics using techniques developed for OSC (to be completed by Summer 2026)

Current projects

- **Objective 3 (Control):** Investigate advanced optimization schemes, including Machine Learning and parameter reduction techniques, for precision phase-space control of particle accelerator systems.
 - Deliverable: Methods for efficiently tuning an accelerator (to be completed by Summer 2026)
 - Exploring the Impact of Radiation Field on Brightness (Piot / Al Marzouk)
 - Advanced beam manipulations enabled by novel computational techniquesin beam physics (Musumeci / Cropp, Isen, Guo)
 - Optimization of ultra-compact free-electron laser performance with very low MTE photocathodes (Rosenzweig / Majernik, Lawler)
 - Strongly nonlinear space-charge in photoinjectors with collimating apertures (Maxson / Li)

Current projects

- **Objective 3 (Control):** Investigate advanced optimization schemes, including Machine Learning and parameter reduction techniques, for precision phase-space control of particle accelerator systems.
 - Deliverable: Summary of the boundaries of applicability of ML in accelerators with varying noise types and data availability (to be completed by Summer 2026).
 - Microscope Tuning by ML and Emittance Optimization (Muller / Zhang)
 - Operating hadron coolers with Machine Learning (Hoffstaetter / Lin)
 - Application of Machine Learning in Compact Photoinjectors (Biedron / Aslam)