Report WG 1: Facilities

Members of WG 1:

- Michaela Arnold (TU Darmstadt) Co-Convener
- Tsukasa Miyajima (KEK) Co-Convener
- Axel Neumann (HZB)
- Achille Stocchi (IJCLab)

ERL Roadmap

The Development of Energy-Recovery Linacs Chris Adolphsen,^t Kevin Andre,^{d,i} Deepa Angal-Kalinin,^f Michaela Arnold,^g Kurt Aulenbacher, J Steve Benson, Jan Bernauer, Alex Bogacz, Maarten Boonekamp, Reinhard Brinkmann, Max Bruker,^o Oliver Brüning,^d Camilla Curatolo,^p Patxi Duthill,^k Oliver Fischer,^{*i*} Georg Hoffstaetter,^{*e*,*c*} Bernhard Holzer,^{*d*} Ben Hounsell,^{*k*,*i*} Andrew Hutton,^{*o*,1} Erk Jensen,^d Walid Kaabi,^k Dmitry Kayran,^c Max Klein,ⁱ Jens Knobloch,^{a,s} Geoff Krafft,^o Julius Kühn,^a Bettina Kuske,^a Vladimir Litvinenko,^m Frank Marhauser,^o Boris Militsyn,^f Sergei Nagaitsev,^v George Neil,^o Axel Neumann,^a Norbert Pietralla,^g Bob Rimmer,^o Luca Serafini,^p Oleg A. Shevchenko,^b Nick Shipman,^{d,q} Hubert Spiesberger,^j Olga Tanaka,ⁿ Valery Telnov,^{b,r} Chris Tennant,^o Cristina Vaccarezza,^h David Verney,^k Nikolay Vinokurov,^b Peter Williams, f Akira Yamamoto, Kaoru Yokoya, Frank Zimmermannd ^aHelmholtz-Zentrum Berlin, Berlin, Germany ^bBudker Institute of Nuclear Physics, 630090, Novosibirsk, Russia ^cBrookhaven National Laboratory, Upton, NY, USA d CERN, Geneva, Switzerland e Cornell University, Ithaca, NY, USA f Daresbury Laboratory (STFC), Daresbury, UK ⁸Technische Universität Darmstadt, Institute for Nuclear Physics, Darmstadt, Germany hINFN, Frascati, Italy ⁱUniversity of Liverpool, Liverpool, UK ^j University of Mainz, Mainz, Germany k IJCLab, Orsay, France ¹CEA Saclay, Saclay, France ^mCenter for Frontiers in Nuclear Science, Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY, USA, and RIKEN BNL Research Center, Brookhaven National Laboratory, Upton, NY, USA ⁿKEK, Tsukuba, Japar ^oThomas Jefferson National Accelerator Facility, Newport News, VA, USA PINFN, Milano, Italy, and LASA ^qLancaster University, Lancaster, UK

- ^rNovosibirsk State University, 630090, Novosibirsk, Russia
- ^sUniversity of Siegen, Siegen, Germany

PREPARED FOR SUBMISSION TO JINST

Sep 2022

27

[physics.acc-ph]

arXiv:2207.02095v2

^t SLAC, Menlo Park, CA, USA ^v Fermilab, Batavia, IL, USA

E-mail: andrew@jlab.org

1Corresponding author.

arXiv:2207.02095 [physics.acc-ph]

See also talk by Andrew Hutton (Mon, 9:50)

Facility Poster and Facility List

 Updates all made? Please check in poster room / contact SPC

 Version of ERL 22 will be made available on indico page

	ERL-Facility-Sum Datei Bearbeiten A	mary-	October 202 Einfügen Forn	22 ☆ C nat Dater	∋ ⊘ n Tools	Erwei	terungen Hilfe	<u>Letzte</u>	Änderung vo	or 2 Stunden	von Stepher	n Benson			🛃 🔹 Freige	ben
	► ~ = = 50% -	\$	% .0 <u>,</u> .0 <u>0</u> 123	- Times	s New	• 16	• B I ·	<u>Տ A</u>	è. ⊞ ∃	Ξ - Ξ -	<u>+</u> + +	- P - GD) 🗄 🔟	γ - Σ	~	/
A	1 → f_X Name															
_	A.		e	D.		F	9	н	1	1	к	L	М	N	0	P
1	Name	JLabFEL	CEBAF-ER	ERL DEMO	ERL Upgr	UV FEL	ER@CEBAF	eIC cooler	r cERL	EUV Source	ALICE	bERLinPro	CBETA	mell Light Sou	S-DALINAC	MES
2	Institute	JLab	JLab	JLab	JLab	JLab	JLab	JLab	KEK	KEK	STFC	HZB	Cornell	Cornell	U Darmstadt	U Mai
2	Main application: Test Facility [TF], Light Source [LS], User Facility [UF], Physics Application [PA]	LS	TF	TF	LS	LS	TF		TF	LS	TF. UF	TF	TF	LS	TF	PA
٤	Commissioning Start		2003	1997	2001		2018		201	3 In planning 2017	7 200	5 2019	201	7 Study	2017 (ERL mode)	
\$	Operation End		2003	3 2001			2018		2010	6	2010	6 tbd	tbd	tbd	tbd	
4	# Re-Circulations	1	1	1	1	1	5			1 1	l	1 1	4	4 1		2
7	RF type	SC	SC	sc sc	SC	SC	SC		SC	c so	s so	c so	s so	SC SC	1	sc
8	RF Frequency [GHz]	1.5	1.5	5 1.5	1.5	1.5	1.5		1.5	3 1.3	1.5	3 1.3	3 1.5	3 1.3		3
e.	Bunch Frequency [MHz]										81.2	5	32:	5	30	00
10	Accelerating Voltage ML [MeV/m]		5, 12	2			5, 12, 20)	8.3	2 12.5 to 15	10 (14)	19	9	7 16		5
**	Accelerating structure ML		2 linacs in racetrack, 20 CM / linac, 5-cell cavities				2 linacs, racetrack, 25 CM per linac, 5-cell and 7-cell cavities		one cryomodule with 2 9-cell cavities	one cryomodule with 4 9-cell cavities	1 cryomodule with 2 cavities 2	one cryomodule with 3 7-cell cavites	l cryomodule with 6 7-cell cavities	e 64 CM with 6 7-cell cavities	4 CM with 2 20-cell cavities each	5
12	Energy gain / linac [MeV]		500	48			700)	ľ	7 50	2	4 44	4 30	5 5000	3(0.4
12	Accelerating Voltage Injector [MeV / m]															5
14	Accelerating structure Injector														CM1: 1 2-cell plus 1 5-cell (avity; CN
15	Bunch charge @ inj [pC]	135	0.07	60	135	60	0.2		0.77 to 40	60	8	0 73	7 123	3 77	0.0	07
16	Bunch length [ps]		0.7	7	0.15	;	0.7	7	0.2 to 3	0.05 to 2	1	1 2	2 .	3 2		5
17	Energy spread (extraction)		0.0001 (%)		0.5	0.5	0.0001 (2-3%)		1.2 x 10-4	1 x 10-3	5 keV	0.005	5 4.00E-04	4 2.00E-04	no data	
18	Transverse emittance [gamma mm mrad]		0.5	5	15	10	0.5		1-1.6 (7.7pC/bu	n 0.8 (60pC/bunch	i 5 to 10	0.4 - 0.6	0.5	5 0.3	no data	
19	Av. Current @ inj [mA]	10	0.035	5 5	9	5	0.1			1 10	0.01	3 100	40	0 100	0.	02
20	Av. Current @ inj [mA] macro pulse										6.:	5				
21	Injector Energy [MeV]		56	5	9	9	79)	2.9	9 10.5	5 8.3	5 6	5 (6 5	5	7.6
22	Max beam energy @ end of accel [MeV]	160) 1050	48	170	210	7079)	20	0 800	3:	5 50) 150	5 ک	65	8.4
22	Max beam power @ end of accel [MW]	1.6	0.03675	0.24	1.53	1.05	0.7079)	0.00	2 8	0.00045	5 5	5 (δ 0.5	0.0013	68
24	Max total current in cavity [mA]	20	0.07	7 10	18	10	1		0 :	2 20	0.020	6 200	320	200	0.	08 ∢ ►
	+	- Ei	nergy-Power	- Shee	et3 👻										Er	kunden

Programme WG Facilities

Facility Report MESA	Florian Hug 🖉
Cornell University	10:50 - 11:10
Facility report of Compact ERL (cERL) at KEK	Hiroshi Sakai 🖉
Cornell University	11:10 - 11:30
Status and Perspective of the Energy Recovery Linac at HZB	Axel Neumann 🥝
Cornell University	11:30 - 11:50
Facility Report PERLE	Walid Kaabi 🖉
Cornell University	11:50 - 12:10

Facility Report CBETA	Georg Hoffstaetter	Ø				
Cornell University						
ERL Operation of the Superconducting Darmstadt Electron Linear Accelerator S-DALINAC – a Facility Report* Dr Michaela Arnold						
CEBAF 5-pass	Gustavo Pérez Segurana	Ø				
Cornell University	13:50 - 14:	10				
TRIUMF e-Linac facility and ERL upgrade	Ms Aveen Mahon	Ø				
Cornell University	14:10 - 14:	25				
BriXSinO high-flux dual X-ray and THz radiation source based on Energy Recovery Linacs	Dr Dario Giove	Ø				
Cornell University	14:25 - 14:	40				

MESA Status Summary

- MESA is a fully instrumented ERL facility for nuclear and particle physics experiments
- Construction of injector is ongoing commissioning starts 2022
- First beams at low energy (15-55 MeV, 1 Recirculation) to the experiments can be expected 2 years after building occupancy (~2025)

- External Beam operation (P2/BDX experiment): polarized beam, up to 150 μA @ 155 MeV
 ERL-operation (MAGIX experiment):
- (un)polarized beam, up to 1 (10) mA @ 105 MeV

JGU

Facility report of Compact ERL (cERL) at KEK : H.Sakai (KEK)

The cERL was constructed and beam operation was started in 2013. and 1mA ERL was done in 2016. The unique performance (<u>high current, low emittance, short bunch with ERL</u>) gives us several important industrial applications in cERL until now.

cERL beam operation for latest 3 years (2019~2022)

- cERL now move to use for the industrial application by using SCRF technology.
- In order to demonstrate ERL-SASE-FEL scheme, IR-FEL production started in cERL. High power IR-FEL with SASE scheme was produced by constructing 2 x 3 m undulators in cERL beam line based by using AI method.
- THz beam line was constructed and successfully transfer to the experimental room.
- Irradiation beam line was built for RI production and material irradiation with CW beam of 10uA and successfully produce not only 99Mo but also 67Cu.
- We also proceed material irradiation to woods to produce nanocellulose in cERL.
- High current ERL beam operation for EUV-FEL is under testing. 0.3 mA CW ERL was done with undulator. We plan to increase beam current to 10 mA for POC of EUV-FEL by using ERL-SASE-FEL scheme.
- Under CW operation, we broke the screen monitor due to mismatch mode selection of laser system→ ITL system is very important for CW operation.
- 500kV DC Gun meet HV severe spark trouble → 480kV beam can be operated after recovery work.

bERLinPro accelerator hall

Status of bERLinPro

- Project officially accomplished with building and warm machine ready in 2020
- Commissioning and setup work concentrates on getting the SRF cryomodule for the SRF gun and booster assembled and running
- Main focus will be the injector operation the coming years and to continue ERL studies, plus opening up the machine for additional applications
- The approach will be two-fold:
 - Study the complete parameter space of the injector from shortest bunches low charge up to highest possible currents and high charge regime
 - Resume Linac studies to complete the ERL recirculator
- A first pilot application of the injector is demonstrating short electron beam with low jitter for UED studies
- bERLinPro will contribute together with PERLE strongly to the European
 ERL roadmap initiative by injector and Linac studies
- For the Linac, an energy efficient approach with FE-FRT tuner systems and potential 4K operation is envisaged
- Currently the SRF gun coldstring is in the cleanroom.
 We expect to have first beam about summer 2023

PERLE Status Report

Starting DC gun installation

Cornell Laboratory for Accelerator-based Sciences and Education (CLASSE)

CBET

CBETA: The test ERL at CBETA

- Cornell DC gun, 2nC peak
- 100mA, 6MeV SRF injector (ICM), 1.3GHz
- 320mA, 6-cavity SRF CW Linac (MLC), 1.3GHz
- 4 Spreaders / Combiners with electro magnets
- FFA cells with permanent magnets, 3.8 energy aperture, 7 beams
- 600kW beam stop

EEE Spectrum, reddid.com, and others.

S-DALINAC

03.10.2022 Michaela Arnold | TU Darmstadt | AG Pietralla | S-DALINAC: Facility Report 11

ACCELENCE

Nuclear

Photonics

ER@CEBAF: A 5-PASS ENERGY RECOVERY EXPERIMENT

TRIUMF e-Linac and ERL upgrade

The BriXSinO Proposal

BriXSinO (the acronym for **Bri**lliant source of **X**rays based on **S**ustainable and **innO**vative accelerators) is a project for a small research infra-structure based on super-conductive accelerators with very high energy sustainability, oriented towards the frontier of high intensity in electron beams with high average power.

BriXSinO is a demonstrator of a new acceleration mechanism – two way in the same Linac, pursuing at the same time research of beam and machine operation in E.R.L. (Energy Recovery Linac) mode, following the original Maury Tigner's configuration of opposite way, dog-bone recirculation.

BriXSinO's mission is the demonstration of high peak and average brightness beam generation, acceleration and manipulation with large energy sustainability. Besides such a primary mission, that is in the mainstream of future strategies for large scale particle accelerators, **BriXSinO** will offer unique radiation beams to users of X-rays and THz, thanks to the very large expected electron beam power/brightness.

Due to constraints in the footprint available at the foreseen installation laboratory (lab. LASA of the Milan INFN unit), and budget/resources limitations typical of a demonstrator, **BriXSinO** will be restricted to modest beam energy, below 50 MeV in ERL mode, and 90 MeV in two-way mode, a minimum requirement in order to conceive a machine set-up composed of multiple accelerating sections, operated with Super-conducting CW RF cavities, within a configuration capable to effectively test two-way and E.R.L. operation modes.

Nevertheless, the beam power achieved is expected to reach up to 250 kW, carried by a CW 5 mA - 50 MeV electron beam, that is recirculated by a proper arc-shaped beam transport line, and decelerated through the main SC Linac back down to the injector beam energy, at about 5 MeV. The challenge is to generate, accelerate, manipulate, characterize, deliver to users and recover back such a large beam power, at the same time reaching the high phase space density (*i.e.* peak brightness) requested by the Compton source and the THz FEL operation.

The document related to the Brixsino proposal has been submitted to INFN to open a discussion about it. A first funding of 1 Meuro has been received by INFN in September 2022 to start the construction of the DC Gun in 2023.

Thanks to all contributions and discussions!

