

Overview of Nb₃Sn Cavity Progress (for CW machines)

Grant No. DE-SC0008431

Special Thanks to:

Sam Posen and Grigory Eremeev, FNAL Uttar Pudasaini, JLab Kensei Umemori and Hayato Ito, KEK Gabriel Gaitan, Matthias Liepe, Ryan Porter, Neil Stilin, Nicole Verbonceour, Cornell University *for their significant contributions!*

ERL 2022 | ls936@cornell.edu

Presented by Liana Shpani

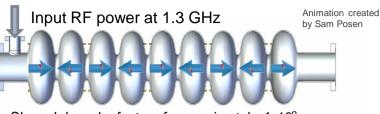
October 5, 2022

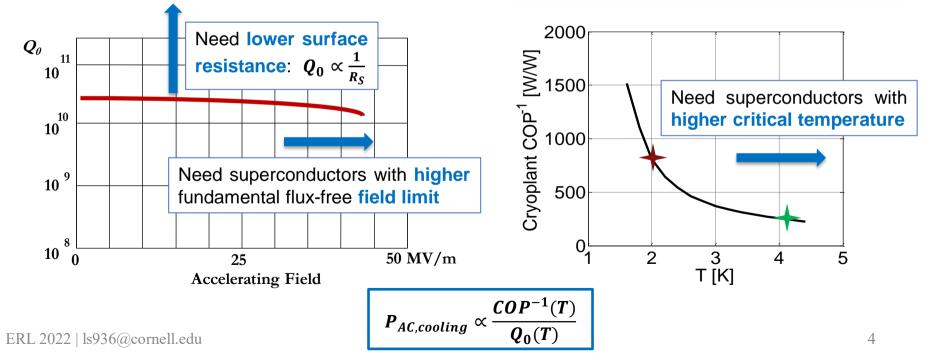
Grant No. PHY-1549132

- 1. Why Nb_3Sn ?
- 2. How do we grow it?
- 3. State-of-the-art performance
- 4. Case Study: LCLS-II
- 5. Remaining Challenges

1. Why Nb₃Sn?

- 2. How do we grow it?
- 3. State-of-the-art performance
- 4. Case Study: LCLS-II
- 5. Remaining Challenges


SRF for Accelerators


Goals:

- 1. Decrease accelerator length
 - \rightarrow Higher accelerating gradients

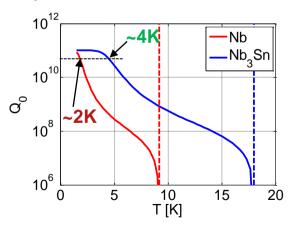
Slowed down by factor of approximately 4x10⁹

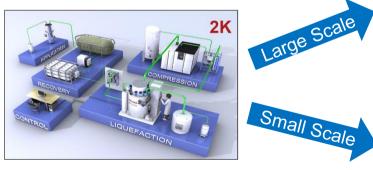
Material	$\lambda(nm)$	$\xi(nm)$	κ	$T_{\rm c}({\rm K})$	$B_{C1}(T)$	$B_{C1}(T)$	$B_{sh}(T)$
Nb	40	27	1.5	9	0.13	0.21	0.25
Nb ₃ Sn	111	4.2	26.4	18	0.042	0.5	0.42
NbN	375	2.9	129.3	16	0.006	0.21	0.17
MgB_2	40	6.9	5.8	40	0.051	0.34	0.33?

Higher critical temperature *T_c*:

- \rightarrow lower losses
- \rightarrow higher operating temperature
- \rightarrow can operate at higher frequency

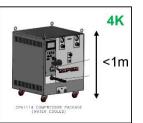
$$R_{BCS} \propto f^2 e^{-const. \times T_C/T}$$


Higher superheating field B_{sh} = higher accelerating gradients: $E_{acc,max} \propto B_{sh}$

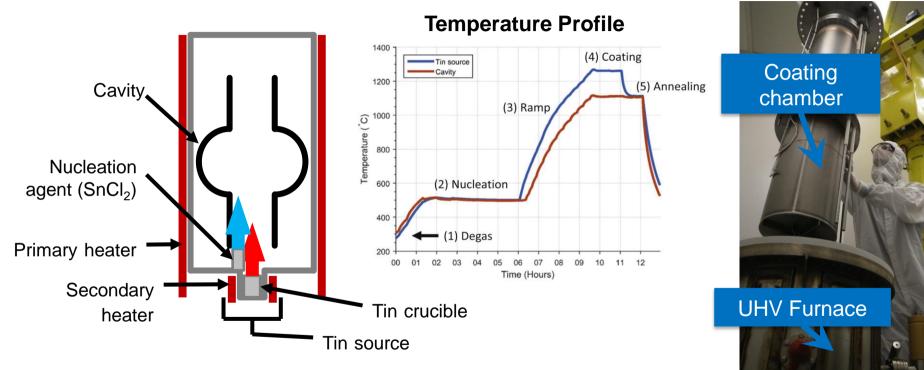

Nb₃Sn Potential


	Nb	Nb ₃ Sn	
Superheating Field (<i>B_{sh}</i>)	240 mT	420 mT	\rightarrow Higher energy gain
Max. E _{acc}	55 MV/m	100 MV/m	→ Shorter accelerators
Critical Temperature (T _C)	9 K	18 K	\rightarrow Lower cooling cost and complexity
Q ₀ at 4.2K	6×10^{8}	6×10^{10}	\rightarrow 4.2K operation with high cryo-
Q ₀ at 2K	3×10^{10}	>1011	efficiency (!!)
U			\rightarrow No superfluid helium

Q₀ given for 1.3 GHz single-cell ILC-shape cavities



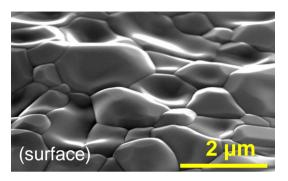
efficiency (!!) \rightarrow No superfluid helium


1. Why Nb3Sn?

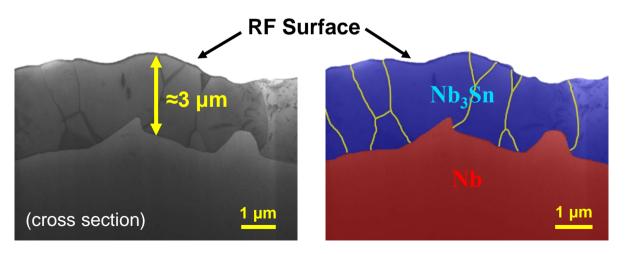
2. How do we grow it?

- 3. State-of-the-art performance
- 4. Case Study: LCLS-II
- 5. Remaining Challenges

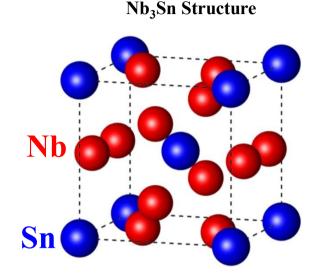
Thermal Vapor Diffusion

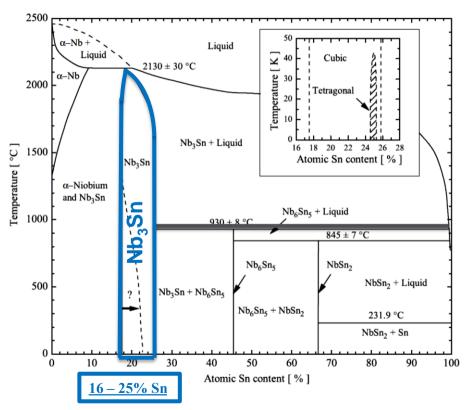

"Wuppertal" configuration, i.e., with secondary heater for the tin source

S. Posen and M. Liepe, Phys. Rev. ST Accel. Beams 15, 112001 (2014).

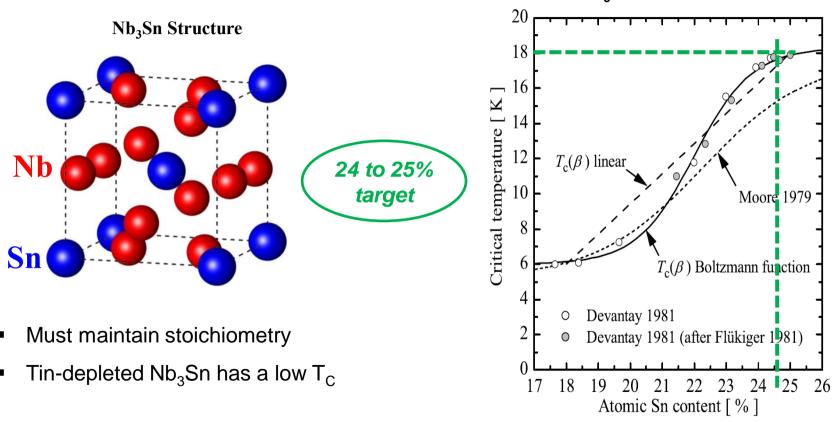

Nb₃Sn Coatings

Nb₃Sn forms a polycrystalline layer on the surface of the niobium



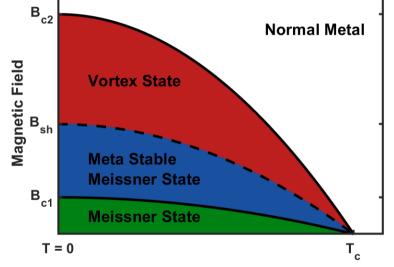

Stoichiometry and T_{c}

- Must maintain stoichiometry
- Tin-depleted Nb₃Sn has a low T_C



Stoichiometry and T_C

T_c vs. Tin Content


A. Godeke, Supercond. Sci. Tech, 2006 11

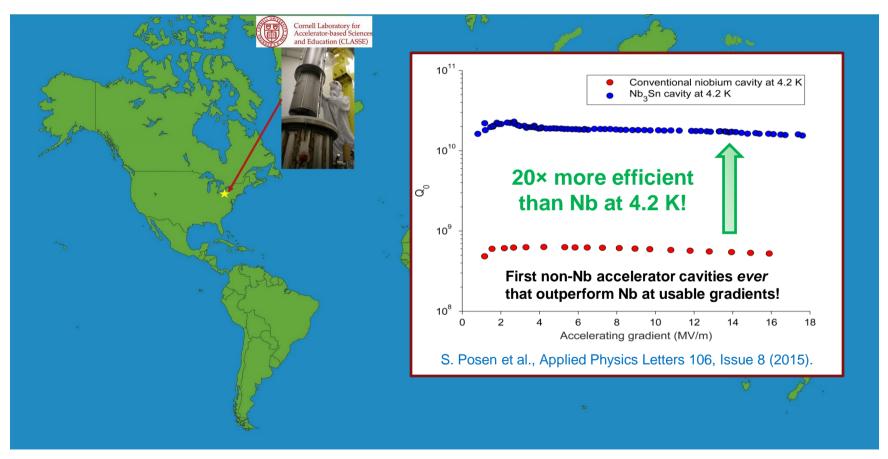
Material Challenges

- Material is brittle
- Low thermal conductivity
- Small coherence length ξ ~ 3-4 nm
 - → Sensitive to small defects
 - $\rightarrow\,$ Small first critical field $\rm B_{c1}$
 - → Need to operate in the flux free metastable Meissner state

 \Rightarrow Need high quality Nb₃Sn films!

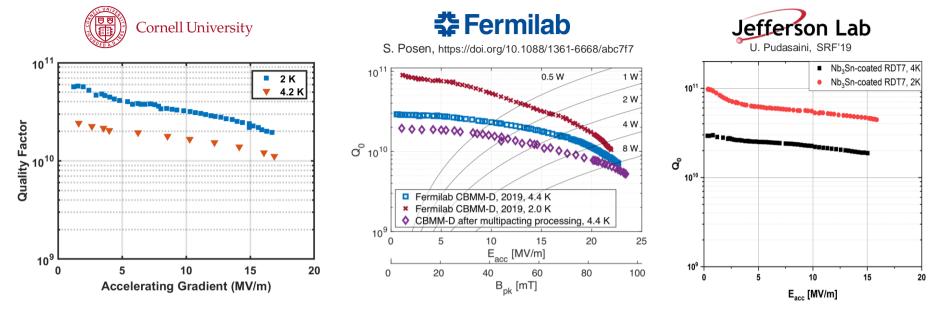
Thin films help

Temperature



- 1. Why Nb3Sn?
- 2. How do we grow it?
- 3. State-of-the-art performance
- 4. Case Study: LCLS-II
- 5. Remaining Challenges

Cornell Nb₃Sn Breakthrough Performance

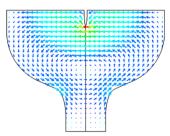

Nb₃Sn Around the World

State-of-the-Art

- ~4 K operation with $Q_0 > 10^{10}$ at typical CW operating fields achieved at all 3 labs
- Current quench fields: 16-22 MV/m (FNAL holds world record)
- Reproducible performance!

(Note: Plots are for single cell cavities)

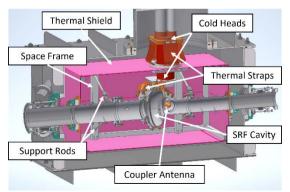
Ongoing R&D at Cornell



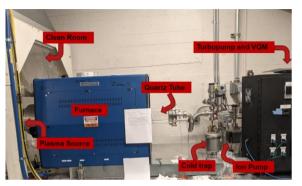
Thin Film Cavity

N. Verboncoeur et al., in Proc. 2022 International Particle Accelerator Conference (IPAC 2022)

 A high field sample host cavity

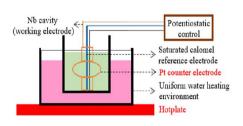

ERL 2022 | ls936@cornell.edu

Sample studies to **improve nucleation** step of vapor diffusion



L. Shpani et al., in Proc. 2022 International Particle Accelerator Conference (IPAC 2022)

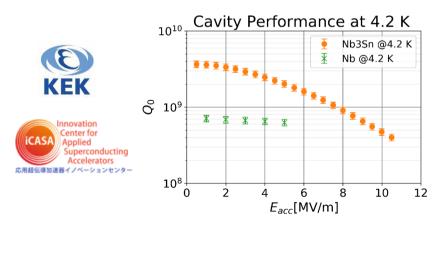
Nb₃Sn Cryomodule R&D

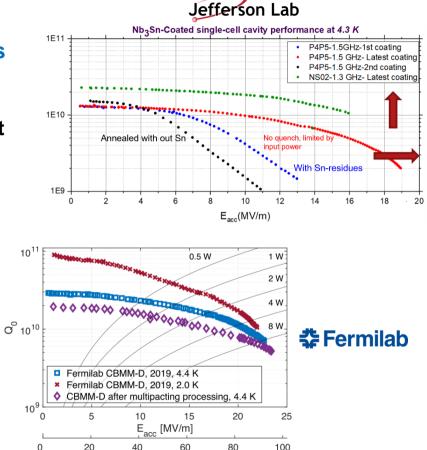


N. Stilin et al., in Proc. 2022 International Particle Accelerator Conference (IPAC 2022) Chemical Vapor Deposition (CVD)

G. Gaitan et al., in Proc. 2022 North American Particle Accelerator Conference (NAPAC 2022)

Electrochemical deposition



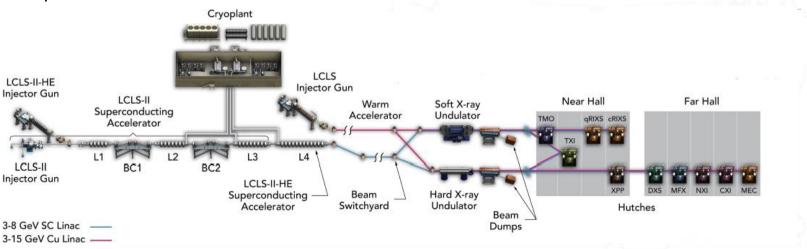

Z. Sun et al., in Proc. 2021 International Conference on RF Superconductivity (SRF'21)

Ongoing R&D outside of Cornell (Examples)

- FNAL and JLab are working on optimizing the coating process to reduce surface roughness and achieve thinner coatings.
- KEK constructed a Nb₃Sn coating system, first results obtained in 2021.

B_{pk} [mT]

- 1. Why Nb3Sn?
- 2. How do we grow it?
- 3. State-of-the-art performance
- 4. Case Study: LCLS-II
- 5. Remaining Challenges


Case Study: LCLS-II

LCLS-II will be the first XFEL based on 4GeV continuous wave superconducting RF (CW-SRF) accelerator technology.

- \rightarrow **280** 1.3 GHz cavities with E_{acc} of 16 MV/m
- \rightarrow Nitrogen-doped niobium SRF cavities can reach high $Q_0 = 2.7 \times 10^{10}$

What if we used Nb₃Sn instead?

N-doped Nb at 2K

$$P_{dis} = N_{cavities} \times \frac{E_{acc}^2}{\frac{R_a}{Q_0}} \times L_{cell}^2$$

$$= 2.65 \ kW$$

1 W takes 800 W of wall power to cool

 $\therefore P_{used} \approx 2 MW$

Using **2K superfluid** helium cryoplant.

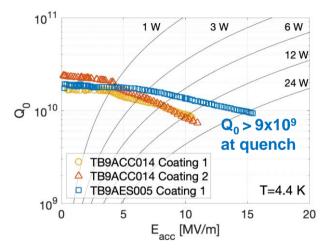
Nb₃Sn at 4.2K

$$P_{dis} = \begin{cases} 3.58 \ kW \ \text{for } Q_0 = 2 \times 10^{10} \\ 1.19 \ kW \ \text{for } Q_0 = 6 \ \times 10^{10} \end{cases}$$

1 W takes 200 W of wall power to cool

$$\therefore P_{used} \approx \begin{cases} 0.7 \ MW \ \text{for} \ Q_0 = 2 \times 10^{10} \\ 0.2 \ MW \ \text{for} \ Q_0 = 6 \ \times 10^{10} \end{cases}$$

Using 4K atmospheric cryoplant.


- 1. Why Nb3Sn?
- 2. How do we grow it?
- 3. State-of-the-art performance
- 4. Case Study: LCLS-II
- 5. Remaining Challenges

Transferring to Multicell Cavities

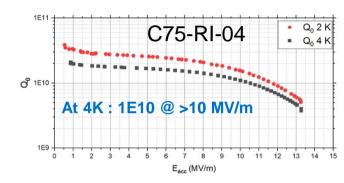
‡ Fermilab

9-cell 1.3GHz cavities coated and RF tested.

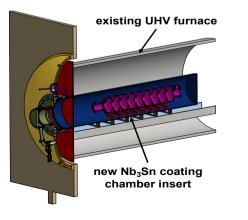
PAPER • OPEN ACCESS

Advances in Nb₃Sn superconducting radiofrequency cavities towards first practical accelerator applications

S Posen¹ (D, J Lee^{1,2} (D, D N Seidman^{2,3}, A Romanenko¹, B Tennis¹, O S Melnychuk¹ and D A Sergatskov¹


Published 11 January 2021 • © 2021 The Author(s). Published by IOP Publishing Ltd

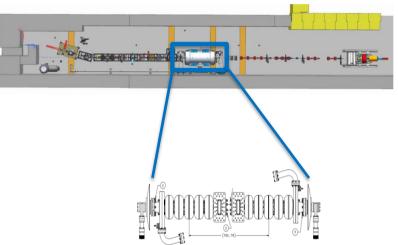
Superconductor Science and Technology, Volume 34, Number 2


Citation S Posen et al 2021 Supercond. Sci. Technol. 34 025007

• 5-cell 1.5GHz cavity coated and RF tested.

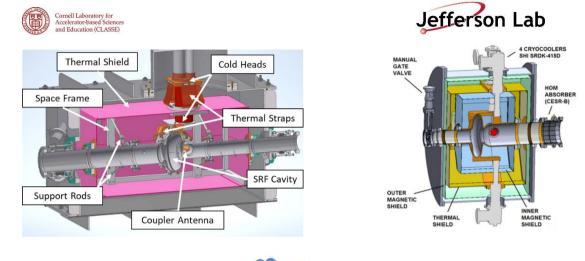
C75 cavity made from large grain Nb

Cornell: Multicell coating facility under development.


Helium Based Cryomodules

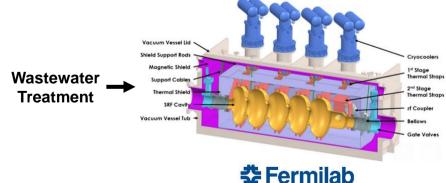
A further challenge is **implementing multi-cell cavities in accelerator cryomodules**.

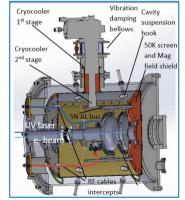
- Material is brittle sensitive to deforming
- Slow cooldown need small temperature gradient across cavity
- 4K operation challenges
 - \rightarrow Microphonics


Nb₃Sn cavities for Upgraded Injector Test Facility (UITF) at JLab

G. Eremeev et al., Proceedings LINAC 2016 (MOPLR024) S. Pokharel et al., Proceedings IPAC 2022 (MOPOTK051)

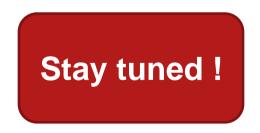
Conduction Cooled Cryomodules




Nb₃Sn for Nuclear Physics (Collaboration ANL/FNAL/Radiabeam)

Argonne

Lead lab PI: Mike Kelly


Fermilab FNAL Lead: Sam Posen

Nb₃Sn for Industrial Accelerators (Collab. Euclid/FNAL/BNL)

Key Takeaways

- Nb₃Sn is a high-potential material for next-generation SRF cavities → Higher energy gain
 - \rightarrow Lower cooling cost and complexity
- Nb₃Sn coating facilities are established around the World (Cornell, FNAL, JLab, KEK, etc.)
- Ongoing R&D will improve Nb₃Sn performance of Nb₃Sn films
 → Thinner films
 - → Reduced surface roughness
- Applications are at early stages
 - \rightarrow Multicell Nb₃Sn cavities
 - \rightarrow Prototype cryomodule testing
 - \rightarrow Turn-key compact cryomodules

