

Long term operation of Cs₂Te in SRF-gun for TELBE user facility

Rong Xiang on behalf of the SRF Gun Group 3-6. Oct. 2022, ERL 2022

Rong Xiang | Institute of Radiation Physics | www.hzdr.de

Outline

- 1. Introduction of SRF gun-II and ELBE
- 2. Cs₂Te photocathodes for SRF gun-II
- 3. Cathode QE evolution during operation
- 4. Summary and outlook

ENDORF

Rong Xiang I HZDR

parameters of SRF Gun-II in operation

E_{acc} = 8 MV/m CW (20 MV/m peak field on axis)
E_{cathode}=12 MV/m (field on cathode)
I_{dark} ~ 120 nA @8 MV/m
4 MeV kinetic energy, bunch charge < 0.4 nC

	Milestones of SRF Gun-II
Jun. 2010	cavity manufacture finish in JLab
Aug. 2014	commissioning at HZDR
Feb. 2015	first CW beam with Cu cathode
Mar./Jun. 2017	Cs ₂ Te (Mo) cathodes overheated in gun
Since 2017	User operation with Mg
Since May 2020	User operation with Cs ₂ Te (on Cu plug)

HIGHLIGHTED ARTICLES

Editors' Suggestion

Successful user operation of a superconducting radiofrequency photoelectron gun with Mg cathodes

J. Teichert, A. Arnold, G. Ciovati, J.-C. Deinert, P. Evtushenko, M. Justus, J. M. Klopf, P. Kneisel, S. Kovalev, M. Kuntzsch, U. Lehnert, P. Lu, S. Ma, P. Murcek, P. Michel, A. Ryzhov, J. Schaber, C. Schneider, R. Schurig, R. Steinbrück, H. Vennekate, I. Will, and R. Xiang

Phys. Rev. Accel. Beams 24, 033401 (2021) - Published 4 March 2021

The first superconducting rf electron source to be operated in a

free electron laser.

Show Abstract +

100% of THz shifts and up to 40% of ELBE user shifts (4500h w/o MD) are served by SRF gun-II.

 $E_{gun} = 4 \text{ MeV}, E_{ELBE} = 30 \text{ MeV}$

200 - 250 pC @ 100 kHz CW

5000

4000

2000 Count

2000

1000

-0.2

- stable and reliable CW operation with 10, 50, 100, 250 ٠ kHz rep.-rate
- E-beam after linac and compression ~300 fs
- THz radiation with frequencies 0.05 2.5 THz
- pulse energies $\leq 10\mu J$ ($\leq 1 THz$), few μJ ($\leq 2.5 THz$)
- pulse energy fluctuations are typ. 3.5 %
- synchronization to external systems typ. 75 fs (including the laser jitter, w/o feedback)
- stable and very reliable SRF gun operation ٠

RMS pulse energy fluctuation = 3.5 %

5000

4000

Count Count

2000

1000

-0,48

-0.46

-0.44

-0,42

-0,40

pulse energy, a.u.

-0.38

-0,36

-0.34

- Jun. 2010 cavity manufacture finish in Jlab.
- Aug. 2014 commissioning at HZDR.
- Comtaminated due to cathode failure in 2017.
- Warming up process helped to recover cavity.
- Stable quality after 2018.

Courtesy : A. Arnold

- metallic cathodes or semicondcutor cathodes
- cathode cooling by LN2 to 77 K
- particle free transfer into the cold gun
- therm. and electrical isolation, DC bias 0 5 kV to suppress MP
- moveable (±0.6 mm) by remote stepper

Cathodes applied in SRF Gun-II

2. Cs₂Te photocathodes for SRF gun-II

- Polished or diamond turned Cu plug
- baking 350°C before preparation
- Te deposition + Cs activation @ 120° C
- till max photocurrent with 260/340nm LEDs
- storage/ transport chamber 10⁻¹¹mbar

2. Cs₂Te photocathodes for SRF gun-II

Dark current ~ 120 nA @ 8 MV/m (Screen/FC 1 m from cavity exit)

3. Cathode QE evolution during operation

Cathode No.	Time in gun	Beam time	Extract Charge
Cs ₂ Te #2021.06.11_7nm	2021.07 ~ 2021.09	492 h	15.3 C
Cs ₂ Te #2021.06.09_10nm*	2021.09 ~ 2021.12	529 h	16.9 C
Cs ₂ Te #2021.06.07_8nm	2022.01 ~ 2022.03	262 h	7.1 C
Cs ₂ Te #2021.10.05_6nm	2022. 03 ~ 2022.09	~ 840 h	~ 29 C

Status: stable operation

3-6 months operation time

The latest Cs₂Te in gun

6 nm Te+ 37 nm Cs fresh QE 7 % 1st operation in gun 1.6% after 2nd insertion 0.4%

Cs₂Te #2021.10.05_6nm on Cu Cs,Te #2021.10.05_6nm - QE in TPK 18.03 cathode into qui 3 -24.06 cathode out due to ELBE shutdown QE (%) chamber 2 -19.07 reinstall transport into gun 01.08 start shifts ~200pC, CW CW RF QE dropped when CW RF was loaded. 02.05 start user shifts ~200pC, CW 01.04.2022 07.98.2022 01.07.2022 01.08.2022 07.09.2022 01.05.2022 01,03,2022 01.10.2022

3. Cathode QE evolution during operation

Another problem: several cathodes showed inhomogenous QE distribution during operation.

3. Cathode QE evolution during operation

Cs/Te

4.91

5.35

Te peak

area (%)

7.70 %

3.04 %

Thickness Monitor

Cs

40.3 nm

32.1 nm

Те

8.2 nm

6.0 nm

No.

#1. 2021.06.07

used in gun

#2. 2021.06.15

not used in gun

Countoou	1	Cabalaa
Courtesy:	Jana	Schaber

Lessons from XPS measurement:

XPS survey

Cs peak

area (%)

28.01 %

25.48 %

1. Cathode #1 (used in the gun) has less Cs on surface.

Cs/Te

3.64

8.38

- 2. In vacuum tranport is necessary:
 - All Te oxidize to Te 6+ & 4+.
 - All Cs exist as Cs 1+

4. Summary and outlook

\checkmark Cs₂Te on Cu is working well in HZDR SRF gun

- QE ~1%, charge life time > 10 C
- no thermal contact problem during operation
- acceptable dark current
- Dedicated RF starting up process is important to avoid MP and to preserve cathode.

Possible reasons for degradation in gun:

- 1. Photoelectrons & unwanted beam hit cavity wall, release gases, which contaminate the cathode surface.
- 2. Released gas molecules are ionized by photoelectrons & unwanted beam, and ions back bombard cathode.
- 3. RF heats the dielectric Cs_2 Te layer.

Thank you!

Many thanks to the ELBE team and our cooperators!

Bundesministerium für Bildung und Forschung

Backup slides

2. Cs₂Te photocathodes for SRF gun-II

