ERL 2022

66th ICFA Advanced Beam Dynamics Workshop on Energy Recovery Linacs

October 3-6, 2022 In-Person at Clark Hall on Cornell Campus More details on <u>Indico</u>

Beam tuning for IR-FEL and industrial application at the compact ERL

ERL2022

66th ICFA Advanced Beam Dynamics Workshop on Energy Recovery Linacs

October 3-6, 2022 Clark Hall on Cornell campus

Miho Shimada, KEK

cERL collaboration team 2019-2022

High Energy Accelerator Research Organization (KEK)

M. Adachi, D. Arakawa, H. Araki, M. Egi, S. Eguchi, M. Fukuda, T. Furuya, K. Haga, K. Harada,
N. Higashi, T. Honda, Y. Honda, T. Honma, X. Jin, E. Kako, Y. Kamiya, R. Kato, H. Kawata,
Y. Kobayashi, Y. Kojima, T. Konomi, M.Kurata, H. Matsumura, S. Michizono, C. Mitsuda, T. Miura,
T. Miyajima, H. Miyauchi, Y. Morikawa, S. Nagahashi, H. Nakajima, N. Nakamura, K. Nakanishi,
K. Nigorikawa, T. Nogami, T. Obina, F. Qiu, H. Sagehashi, H. Sakai, M. Shimada, T. Shioya, M. Shiozawa,
M. Tadano, T. Tahara, T. Takahashi, R. Takai, H. Takaki, O. Tanaka, T. Tanikawa, Y. Tanimoto,
K. Tsuchiya, T. Uchiyama, A. Ueda, K. Umemori, M. Yamamoto

National Institutes for Quantum and Radiological Science and Technology (QST)

R. Hajima, K. Kawase, R. Nagai, M. Sawamura, M. Mori, N. Nishimori

National Institutes for Advanced Industrial Science and Technolory (AIST)

T. Sato, M. Kakehata, Y. Yashiro, T. Endo, K. Sakakibara, A. Kumagai

Hiroshima University M. Katoh, M. Kuriki, A. Kano

SLAC National Accelerator Laboratory Nora Peak Norvell

National Institute of Technology, Akita College F. Sakamoto

Institute of Modern Physics (IMP) CAS China Zong Yang

Compact ERL

Parameter	IR-FEL	CW operation
Beam Energy	17.5 MeV	17.5 MeV
Injection Energy	5 MeV	3.5 MeV
Bunch Charge	60 pC	0.2 pC
Bunch Repetition	81.25/1300 MHz	1300 MHz
Pulse duration	1/0.1 µs	CW
Average Current	24 / 39 nA	0.25 mA
RF Frequency	1.3 GHz	1.3 GHz
Energy recovery	no	yes

60 pC/bunch w/o energy recovery

- Scan of energy chirp for bunch compression
- Al tuning (bunch compression, matching to undulators, etc)
- High beam current operation with undulator
 - Low charge, CW 250uA
 - Optics matching, orbit correction
 - Mitigation of the radiation due to beam loss

Parameters of cERL (2019-2022)

- Optics tuning for IR-FEL w/o energy recovery
- High beam current operation with undulator
- Summary

Optics tuning for IR-FEL w/o energy recovery

• High beam current operation with undulator

• Summary

Install of undulator for IR-FEL

FIG. 1. Simulated FEL power development along the undulator based on the beam parameters determined in the experiment, chirp phase of +29° and R_{56} of -0.282 m. The initial energy modulation is an empirical parameter to adjust the absolute power using the start-up effect. The radiation wavelength was set to 20 μ m.

Undulator				
Strength a _w	0.97			
Tapering coefficient	-0.048			
Period λ_{μ}	24 mm			
Length	$3 \text{ m} \times 2$			

Beam profiles after matching

Arc of the recirculation loop

QMs in arc dedicates only to R56 and achromat tuning. Transverse profiles are controlled with QMs in the straight section

Injector

Q scan response is matched as well as the transverse profiles

Bunch compression with LSC at cERL

LSC : Longitudinal phase space

3.5

2.5

2

1.5

0.5

Experimental results (2019.6)

chirp phase +8 deg is suitable for application such as IR-FEL (sd) z (balance of short bunch length, small energy spread, ...)

Tracking simulation

energy spread increases at the south straight section

 \rightarrow LSC is dominant (compared with CSR wake)

-15.016

z [m

-15.01

Undulator tuning

The screen monitor profiles are matched with the design optics by a combination quadrupoles. The matching points are at U1 and U2, respectively.

TABLE III. Measured beam parameters after FEL optimization.

Bunch charge		60 pC/bunch	
Exit of main linac			
Norm. emittance (X) Norm. emittance (Y) Energy spread Total energy	ε_x ε_y $\Delta \gamma / \gamma$ σ_t	3.27 ± 0.17 μm 1.57 ± 0.05 μm 0.6% 17.7 MeV	
Transport			
Chirp phase R ₅₆		$+29^{\circ}$ -0.282 ± 0.046 m	
Entrance of undulator			
Norm. emittance (X) Norm. emittance (Y) Bunch length (rms)		5.55 ± 0.19 μm 5.11 ± 0.16 μm ~ps (0.6 ps structure)	

Best chirp phase depends on the operation season

ulator (A) U	ndulator (B) Und	ulator (C) Undula	tor (D)	
IncVal	0 🔺	Step 0.01	Set	Ref Reset
Name	ratio	reference	diff	src
QMIS01	0	-0.743	0	-0.743
QMIS02	0	-2.207	0	-2.207
QMIS03	0	1.382	0	1.382
QMIS04	0	3,219	0	3,219
QMIS05	0	-6,552	0	-6,552
QMIS06	0	-0.296	0	-0.296
QMIS07	-8.68243	-35.46	0	-35.46
QMIS08	41,5856	44.587	0	44.587
QMIS09	-44.5416	-6.832	-0	-6,832
QMIS10	11.30896	-15,291	-0	-15, 291

orbit between U1 and U2 \rightarrow 4 QMs \rightarrow R56+SX \rightarrow 4 Sttering(H/V) \rightarrow buncher/INJ1 cavity \rightarrow R56+SX \rightarrow chirp phase (ML2) \rightarrow R56+SX \rightarrow 4 Steering(H/V) \rightarrow (chicane between U1 and U2)

Red: longitudinal profile tuning
Combination of RF and R56 tuning
R56 tuning almost does not change transverse profile
Blue and Purple: transverse profile and orbit tuning
Combination of QMs and orbit tuning
U2 tuning after U1 tuning

AI makes the beam tuning highly effective because 3~6 parameters are optimized at once

Bunch length measurement with streak camera

Streak camera: FESCA-200 OTR at the THz-CTR measurement location Sequence 100 images are stacked

Results

Bunch length depends on R56 Minimum rms bunch length is 1.66 ps with 0.64 ps resolution

bunch length (FWHM) [ps]

• Optics tuning for IR-FEL w/o energy recovery

• High beam current operation with undulator

• Summary

Beam matching at low charge

Low energy region at the injector

- Match the Q scan response measurement with the design
- Q scan measurement is iterated because it is difficult to estimate the optics development with liner optics (strong space charge effect)

Intermediate energy region at the recirculation loop

• Obtain the beta function at one Q scan measurement, matching the downstream optics with linear optics

Example of injector matching

80

Beam tuning for high current CW operation (trials)

1st trial: Gun laser pulse 40ps \rightarrow limited at 1µA

2nd trial: Gun laser pulse 3ps \rightarrow limited at 100µA

Radiation interlock at gun (return beam hits the gun?) Three peaks in the dispersion area

Longitudinal profile is simple High radiation level at the undulator

3rd trial : Insertion of COLs \rightarrow go to 300 μA

High radiation level out of the shield! Collimator (COL3) at high energy is harmful.

Beam loss position is changed at every trial...

Halo and tail collimation at low energy

5th trial: Vertical off-center orbit at injector cavity \rightarrow limit at 40 μ A

Off-center cavity orbit kicks the long tail Collimator (COL2) for halo elimination

 \rightarrow High radiation level around the main linac

6th trial: off-center orbit + collimator tuning \rightarrow go to 250µA

 $250\mu A$ is achieved with a low level (higher current terminated by time limit)

COL1

Off-center orbit

Injector module

CAM8

COL2

Photocathode DC gun

Measurement of radiation level due to beam loss Large beam loss Before the high current operation Image: Construction of the high current operation PMTs with CsI scintillators (16 + 4) Image: Construction operation beam tuning with burst mode (extremely low average current) Image: Construction operation During the high current operation Image: Construction operation 12 ALOKA monitors, PMTs for fast Interlock, manual survey out of the shield

After the high current operation Gafchromic film

Compared with the previous operation

	Feb-Mar. 2022	Jun. 2018	Feb-Mar. 2016
Maximum beam current [uA]	250 (time limit of tuning)	900 (not to exceed 1mA by a fluctuation of a current monitor)	
Injection energy [MeV]	3.5 (increased for small emittance)	3.0	2.9
Recirculation energy [MeV]	17.6 (limited by FE of the main linac)	17.6	19.9
Momentum ratio	1:5 (limited by chamber aperture)	1:6	1:7
Gun laser pulse [ps]	3 (suitable for small bunch charge)	3	3
Bunch repetition [MHz]	1300	1300	162.5 / 1300
Bunch charge [pC/bunch]	0.2	0.7	5.5 / 0.7
Undulator	Yes (first trial)	No	No

Even after installing the undulator, the high current beam operation is successful!

Summary

Optics tuning for IR-FEL w/o energy recovery

- Beam size is matched at key locations; end of the main linac, in the arc, and two FELs.
- Chirp phase survey by manual
- Al beam tuning for maximizing the IR-FEL intensity

High beam current operation with undulator

- RMS beam size matches with the design optics at a small bunch charge
- Collimation at high energy causes harmful radiation
- Off-center orbit in the injector works for collimating the halo and tail at low energy
- Successful 250uA CW operation with the small radiation level