Contribution ID: 3 Type: Presentation

The high repetition rate thermionic injector

Wednesday, 5 October 2022 14:10 (15 minutes)

At Eindhoven university a high repetition rate thermionic injector is being built. The injector is capable of supplying electron bunches at a repetition rate of 1.5 GHz, which can be used for x-ray generation.

The electron source generates a continuous beam with a high current and low emittance through thermionic emission. The continuous electron beam is then chopped into a pulsed beam by a combination of a dual mode elliptical RF cavity and a knife-edge. The dual mode cavity uses both the fundamental mode (1.5 GHz) and its second harmonic (3.0 GHz) to increase the duty cycle of the chopping process to approximately 30% with a minimal loss of beam quality. Finally, a second dual mode elliptical RF cavity compresses the pulse length of the bunches, preparing the beam for injection into an X-band linear accelerator.

The first part of the injector is capable of operating at an emission current of 10 mA with a sub-50 nm rad transverse rms emittance. Construction of the elliptical chopper cavity has completed and is currently being implemented, after which the properties of the electron bunches after chopping will be measured.

Primary authors: VAN DEN BERG, Rick (Technische Universiteit Eindhoven); Dr TOONEN, Wiebe (Eindhoven University of Technology)

Co-authors: Prof. LUITEN, Jom (Eindhoven University of Technology); Dr MUTSAERS, Peter (Eindhoven University of Technology)

Presenter: VAN DEN BERG, Rick (Technische Universiteit Eindhoven)

Session Classification: Electron Sources

Track Classification: Electron Sources