

ERL for photonuclear reactions

Tobias Beck Facility for Rare Isotope Beams, Michigan State University, East Lansing, MI 48824, USA

MICHIGAN STATE UNIVERSITY

This material is based upon work supported by the U.S. Department of Energy Office of Science under Cooperative Agreement DE-SC0000661, the State of Michigan and Michigan State University designs and establishes FRIB as a DOE Office of Science National User Facility in support of the mission of the Office of Nuclear Physics.

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science Michigan State University

Tobias Beck, ERL'22, 05.10.2022

Facility for Rare Isotope Beams

U.S. Department of Energy Office of Science Michigan State University

- interactions of photons with nuclei
- experiments
- observables

Tobias Beck, ERL'22, 05.10.2022

- historic overview
- photon sources and facilities
- "wishes" from the user side

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science Michigan State University

- interactions of photons with nuclei
- experiments
- observables

Tobias Beck, ERL'22, 05.10.2022

Interaction of photons with nuclei

Facility for Rare Isotope Beams

U.S. Department of Energy Office of Science Michigan State University

Thomson, Rayleigh, and Compton scattering

size, charge, polarizability

Interaction of photons with nuclei

Facility for Rare Isotope Beams

U.S. Department of Energy Office of Science Michigan State University $\lambda \gg D$:

Thomson, Rayleigh, and

Compton scattering

size, charge, polarizability

Resonance condition: absorption and resonant emission

Interaction of photons with nuclei

Facility for Rare Isotope Beams

U.S. Department of Energy Office of Science Michigan State University

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science Michigan State University

Typical photonuclear reactions:

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science Michigan State University

Typical photonuclear reactions:

Facility for Rare Isotope Beams

U.S. Department of Energy Office of Science Michigan State University Typical photonuclear reactions:

 Nuclear resonance fluorescence (NRF)

Schiff, Phys. Rev. 70, 761 (1946)

photoactivation

Facility for Rare Isotope Beams

U.S. Department of Energy Office of Science Michigan State University Typical photonuclear reactions:

 Nuclear resonance fluorescence (NRF)

Schiff, Phys. Rev. 70, 761 (1946)

photoactivation

Facility for Rare Isotope Beams

U.S. Department of Energy Office of Science Michigan State University Typical photonuclear reactions:

 Nuclear resonance fluorescence (NRF)

Schiff, Phys. Rev. 70, 761 (1946)

photoactivation

Facility for Rare Isotope Beams

U.S. Department of Energy Office of Science Michigan State University

Typical photonuclear reactions:

 Nuclear resonance fluorescence (NRF)

Schiff, Phys. Rev. 70, 761 (1946)

- photoactivation
- photodissociation
- photofission

Facility for Rare Isotope Beams

U.S. Department of Energy Office of Science Michigan State University

Typical photonuclear reactions:

 Nuclear resonance fluorescence (NRF)

Schiff, Phys. Rev. 70, 761 (1946)

- photoactivation
- photodissociation
- photofission

How to produce photon beams fulfilling a resonance condition?

Generation of photon "beams" — the early days

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science

Michigan State University

Generation of photon "beams" — the early days

Facility for Rare Isotope Beams

U.S. Department of Energy Office of Science Michigan State University

Potentially tunable γ -ray energies:

Bothe and Gentner, Z. Phys. 106, 236 (1937)

Bothe and Gentner, Z. Phys. 104, 685 (1937) Reaction:

 $^{7}\text{Li}(p,\gamma)^{8}\text{Be} @ 440 \text{ keV}$

subsequent (γ, n) reactions

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science Michigan State University

U.S. Department of Energy Office of Science Michigan State University

Typical scales:

resonance energy: resonance width: Doppler broadening: recoil energy:

U.S. Department of Energy Office of Science Michigan State University

Typical scales:

resonance energy: resonance width: Doppler broadening: recoil energy:

U.S. Department of Energy Office of Science Michigan State University

Typical scales:

resonance energy: resonance width: Doppler broadening: recoil energy:

Alternative: continuous photon spectrum — electron-generated bremsstrahlung.

Baldwin and Klaiber, Phys. Rev. 71, 3 (1947)

Westendorp and Charlton, J. App. Phys. 16, 581 (1945)

Facility for Rare Isotope Beams

U.S. Department of Energy Office of Science Michigan State University

Hayward, Phys. Rev. 106, 991 (1957)

Alternative: continuous photon spectrum — electron-generated bremsstrahlung.

Baldwin and Klaiber, Phys. Rev. 71, 3 (1947)

Westendorp and Charlton, J. App. Phys. 16, 581 (1945)

Facility for Rare Isotope Beams

U.S. Department of Energy Office of Science Michigan State University

Hayward, Phys. Rev. 106, 991 (1957)

Tobias Beck, ERL'22, 05.10.2022

Alternative: continuous photon spectrum — electron-generated bremsstrahlung.

Baldwin and Klaiber, Phys. Rev. 71, 3 (1947)

Westendorp and Charlton, J. App. Phys. 16, 581 (1945)

Facility for Rare Isotope Beams

U.S. Department of Energy Office of Science Michigan State University

Hayward, Phys. Rev. 106, 991 (1957)

Tobias Beck, ERL'22, 05.10.2022

Alternative: continuous photon spectrum — electron-generated bremsstrahlung.

Baldwin and Klaiber, Phys. Rev. 71, 3 (1947)

Westendorp and Charlton, J. App. Phys. 16, 581 (1945)

Facility for Rare Isotope Beams

U.S. Department of Energy Office of Science Michigan State University Hayward, Phys. Rev. 106, 991 (1957)

Alternative: continuous photon spectrum — electron-generated bremsstrahlung.

Baldwin and Klaiber, Phys. Rev. 71, 3 (1947)

Westendorp and Charlton, J. App. Phys. 16, 581 (1945)

Normal- and superconducting linear electron accelerators were the "workhorses" for photonuclear research from the 1980s to the early 2000s.

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science Michigan State University

Hayward, Phys. Rev. 106, 991 (1957)

Kneissl, Prog. Part. Nucl. Phys. 37, 349 (1996)

Kneissl, J. Phys. G 32, R217 (2006)

Experiments using photons from bremsstrahlung enable an "all-in-one-go" approach. However, this comes at a cost.

Contributions to spectrum:

- nuclear γ -rays
- detector response
- nonresonant background
- natural background

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science Michigan State University

Experiments using photons from bremsstrahlung enable an "all-in-one-go" approach. However, this comes at a cost.

Courtesy of Wilhelmy and Zilges

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science Michigan State University

this comes at a cost.

Courtesy of Wilhelmy and Zilges

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science Michigan State University

- Experiments using photons from bremsstrahlung enable an "all-in-one-go" approach. However,

this comes at a cost.

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science Michigan State University

this comes at a cost.

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science Michigan State University

this comes at a cost.

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science Michigan State University

this comes at a cost.

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science Michigan State University

Polarized photon beams with narrow bandwidth are produced by Laser-Compton Backscattering.

Milburn, Phys. Rev. Lett. 10, 75 (1963)

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science

collimator → target γ (MeV) photons detectors Energy

Litvinenko, Phys. Rev. Lett. 78, 4569 (1997)

Polarized photon beams with narrow bandwidth are produced by Laser-Compton Backscattering.

Milburn, Phys. Rev. Lett. 10, 75 (1963)

Yan, Nat. Photonics 13, 629 (2019)

Facility for Rare Isotope Beams

U.S. Department of Energy Office of Science Michigan State University collimator target

Litvinenko, Phys. Rev. Lett. 78, 4569 (1997)

Polarized photon beams with narrow bandwidth are produced by Laser-Compton Backscattering.

Milburn, Phys. Rev. Lett. 10, 75 (1963)

Yan, Nat. Photonics 13, 629 (2019)

Facility for Rare Isotope Beams

U.S. Department of Energy Office of Science Michigan State University collimator y (MeV) photons detectors target detectors

Litvinenko, Phys. Rev. Lett. 78, 4569 (1997)

Properties:

$$E_{\gamma} = 2 - 130 \,\mathrm{MeV}$$
 • $\Delta E_{\gamma} / E_{\gamma} = 1 - 3 \,\%$

• photon flux $\leq 10^9 \gamma s^{-1}$ • linear pol. > 99 %

Polarized photons in the entrance channel enable the determination of...

Angular distribution for $0^+ \rightarrow 1^{\pi} \rightarrow 0^+$ cascade: $W(\vartheta, \varphi) = 1 + +\frac{1}{2}\pi\cos(2q)$

Facility for Rare Isotope Beams

U.S. Department of Energy Office of Science Michigan State University

$$\frac{1}{2} \Big[P_2(\cos\vartheta) \\ \varphi) P_2^{(2)}(\cos\vartheta) \Big]$$

Tobias Beck, ERL'22, 05.10.2022

Polarized photons in the entrance channel enable the determination of... parity quantum numbers and ...

Angular distribution for $0^+ \rightarrow 1^{\pi} \rightarrow 0^+$ cascade: $W(\vartheta, \varphi) = 1 + -$

 $+\frac{1}{2}\pi\cos(2e)$

Pietralla, Phys. Rev. Lett. 88, 012502 (2002)

Facility for Rare Isotope Beams

U.S. Department of Energy Office of Science Michigan State University

$$\frac{1}{2} \Big[P_2(\cos\vartheta) \\ \varphi) P_2^{(2)}(\cos\vartheta) \Big]$$

Tobias Beck, ERL'22, 05.10.2022

Polarized photons in the entrance channel enable the determination of... parity quantum numbers and ... multipol

Angular distribution for $0^+ \to 1^{\pi} \to 0^+$ cascade: $W(\vartheta, \varphi) = 1 + \frac{1}{2} \Big[P_2(\cos \vartheta) + \frac{1}{2} \pi \cos(2\varphi) P_2^{(2)}(\cos \vartheta) \Big]$

 $\frac{1}{2}$

Pietralla, Phys. Rev. Lett. 88, 012502 (2002)

Facility for Rare Isotope Beams

U.S. Department of Energy Office of Science Michigan State University

multipole mixing ratios.

Nuclear physics with photon beams

Observables:

- excitation energies
- angular momenta
- branching ratios
- level lifetimes
- With additional polarization information:
 - parity quantum numbers
 - multipole mixing ratios

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science Michigan State University

Nuclear physics with photon beams

Observables:

- excitation energies
- angular momenta
- branching ratios
- level lifetimes
- With additional polarization information:
 - parity quantum numbers
 - multipole mixing ratios

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science Michigan State University

Advantages:

- model-independent (pure EM interaction)
- Selectivity (E1, M1, and E2 modes)
- high resolution

Nuclear physics with photon beams

Observables:

- excitation energies
- angular momenta
- branching ratios
- level lifetimes
- With additional polarization information:
 - parity quantum numbers
 - multipole mixing ratios

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science Michigan State University

Advantages:

- model-independent (pure EM interaction)
- Selectivity (E1, M1, and E2 modes)
- high resolution
- Disadvantages:
 - low cross-section (target size, duration)
 - nonresonant background
 - inefficient detection

Photon-beam side:

• narrower bandwidth $\Delta E/E$

selective manipulation of single excited states

reduced beam-spot size

improved spatial resolution

increased luminosity

competition with low cross-section

improved diagnostics

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science Michigan State University

Photon-beam side:

• narrower bandwidth $\Delta E/E$

selective manipulation of single excited states

reduced beam-spot size

improved spatial resolution

increased luminosity

competition with low cross-section

improved diagnostics

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science Michigan State University

Photon-beam side:

• narrower bandwidth $\Delta E/E$

selective manipulation of single excited states

reduced beam-spot size

improved spatial resolution

increased luminosity

competition with low cross-section

improved diagnostics

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science Michigan State University

Zilges, Prog. Part. Nucl. Phys. 122, 103903 (2022)

Photon-beam side:

• narrower bandwidth $\Delta E/E$

selective manipulation of single excited states

reduced beam-spot size

improved spatial resolution

increased luminosity

competition with low cross-section

improved diagnostics

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science Michigan State University

next-generation photon source

LCB at a multi-turn SRF-ERL

TECHNISCHE UNIVERSITÄT DARMSTADT

Federal Ministry of Education and Research

ERL for photonuclear reactions

Tobias Beck Facility for Rare Isotope Beams, Michigan State University, East Lansing, MI 48824, USA

MICHIGAN STATE UNIVERSITY

This material is based upon work supported by the U.S. Department of Energy Office of Science under Cooperative Agreement DE-SC0000661, the State of Michigan and Michigan State University. Michigan State University designs and establishes FRIB as a DOE Office of Science National User Facility in support of the mission of the Office of Nuclear Physics.

TRIANGLE UNIVERSITIES NUCLEAR LABORATORY

Zilges, Prog. Part. Nucl. Phys. 122, 103903 (2022); courtesy of Lyncean Technologies

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science Michigan State University

Properties:

- warm linac
- 35 MHz collision frequency
- IR and green lasers
- $E_{\gamma} = 1 20 \, \text{MeV}$
- photon flux $\geq 10^{11} \gamma s^{-1}$
- $\Delta E_{\gamma}/E_{\gamma} \leq 0.5 \%$

Appendix "Wishlist"

Uncertainty scattered photon energy:

$$\frac{\Delta E_{\gamma}}{E_{\gamma}} \approx \sqrt{\left(2\frac{\Delta E_e}{E_e}\right)^2 + \left(\frac{\Delta E_L}{E_L}\right)^2 + (-\gamma^2 \Delta \vartheta_f^2)^2 + \left(\frac{\Delta E_e}{E_L}\right)^2}$$

Requirements next-generation photon source:

- fewer bends
- high repetition rate
- high current GeV-range electrons

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science Michigan State University

Beam-spot size:

Beck, Dissertation, TU Darmstadt (2021)

Beam intensity

Isotope-sensitive scanning

Energy [keV]

Flux of gamma-rays

Hajima, FACET-II Science Opportunities Workshops (2015)

MeV-range photon beams for isotope-sensitive scanning of suspicious material.

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science Michigan State University

Hajima, FACET-II Science Opportunities Workshops (2015)

Isotope-sensitive scanning

Energy [keV]

Flux of gamma-rays

Hajima, FACET-II Science Opportunities Workshops (2015)

MeV-range photon beams for isotope-sensitive scanning of suspicious material.

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science Michigan State University

Hajima, FACET-II Science Opportunities Workshops (2015)

Requirements:

- tunable and portable photon source
- high luminosity for fast measurements

ERL for photonuclear reactions

Tobias Beck Facility for Rare Isotope Beams, Michigan State University, East Lansing, MI 48824, USA

MICHIGAN STATE UNIVERSITY

This material is based upon work supported by the U.S. Department of Energy Office of Science under Cooperative Agreement DE-SC0000661, the State of Michigan and Michigan State University designs and establishes FRIB as a DOE Office of Science National User Facility in support of the mission of the Office of Nuclear Physics.

